Trends, directions for further research, and some open problems of fractional calculus

被引:89
作者
Diethelm, Kai [1 ]
Kiryakova, Virginia [2 ]
Luchko, Yuri [3 ]
Machado, J. A. Tenreiro [4 ]
Tarasov, Vasily E. [5 ]
机构
[1] Univ Appl Sci Wurzburg Schweinfurt, Fac Appl Nat Sci & Humanities FANG, Ignaz Schon Str 11, D-97421 Schweinfurt, Germany
[2] Bulgarian Acad Sci, Inst Math & Informat, Sofia 1113, Bulgaria
[3] Berlin Univ Appl Sci & Technol, Dept Math Phys & Chem, Luxemburger Str 10, D-13353 Berlin, Germany
[4] Polytech Porto, Inst Engn, Dept Elect Engn, Rua Dr Antonio Bernardino Almeida 431, P-4249015 Porto, Portugal
[5] Natl Res Univ, Moscow Aviat Inst, Fac Informat Technol & Appl Mathemat, Moscow 125993, Russia
关键词
Fractional calculus; Sonine kernels; General fractional integrals and derivatives; Fractional differential equations; Numerical solution; Fractional dynamics; VOLTERRA INTEGRAL-EQUATIONS; FAST NUMERICAL-SOLUTION; DIFFERENTIAL-EQUATIONS; EFFICIENT COMPUTATION; EXACT DISCRETIZATION; DYNAMIC-SYSTEMS; DERIVATIVES; QUANTUM; SCHEME; MEMORY;
D O I
10.1007/s11071-021-07158-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The area of fractional calculus (FC) has been fast developing and is presently being applied in all scientific fields. Therefore, it is of key relevance to assess the present state of development and to foresee, if possible, the future evolution, or, at least, the challenges identified in the scope of advanced research works. This paper gives a vision about the directions for further research as well as some open problems of FC. A number of topics in mathematics, numerical algorithms and physics are analyzed, giving a systematic perspective for future research.
引用
收藏
页码:3245 / 3270
页数:26
相关论文
共 185 条
[121]   FRACTIONAL DERIVATIVES AND CAUCHY PROBLEM FOR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER [J].
Rogosin, Sergei ;
Dubatovskaya, Maryna .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (06) :1810-1836
[122]  
Rogula D., 1982, Nonlocal Theory of Material Media, P123
[123]  
Rostovtsev N.A., 1959, J APPL MATH MECH, V23, P1143, DOI [10.1016/0021-8928(59)90051-6, DOI 10.1016/0021-8928(59)90051-6]
[124]  
Samko S. G., 1993, FRACTIONAL INTEGRALS
[125]  
Samko S. G., 2003, Int. J. Math. Math. Sci, V2003, P3609, DOI DOI 10.1155/S0161171203211455
[126]   On a critique of a numerical scheme for the calculation of fractionally damped dynamical systems [J].
Schmidt, A ;
Gaul, L .
MECHANICS RESEARCH COMMUNICATIONS, 2006, 33 (01) :99-107
[127]  
Shen J., 2019, Handbook of Fractional Calculus with Applications, V3, P127, DOI [10.1515/9783110571684-005, DOI 10.1515/9783110571684-005]
[128]  
Silin V.P., 1961, ELECTROMAGNETIC PRO
[129]   Galerkin projections and finite elements for fractional order derivatives [J].
Singh, Satwinder Jit ;
Chatterjee, Anindya .
NONLINEAR DYNAMICS, 2006, 45 (1-2) :183-206
[130]  
Sonine N., 1884, Acta Math, V4, P171, DOI DOI 10.1007/BF02418416