Temperature controlled motion of an antiferromagnet-ferromagnet interface within a dopant-graded FeRh epilayer

被引:29
作者
Le Graet, C. [1 ,2 ]
Charlton, T. R. [3 ]
McLaren, M. [4 ]
Loving, M. [5 ]
Morley, S. A. [1 ]
Kinane, C. J. [3 ]
Brydson, R. M. D. [4 ]
Lewis, L. H. [5 ]
Langridge, S. [3 ]
Marrows, C. H. [1 ]
机构
[1] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[2] Lab Magnetisme Bretagne, F-29238 Brest 3, France
[3] Rutherford Appleton Lab, Sci & Technol Facil Council, ISIS, Didcot OX11 0QX, Oxon, England
[4] Univ Leeds, Inst Mat Res, Leeds LS2 9JT, W Yorkshire, England
[5] Northeastern Univ, Dept Chem Engn, Boston, MA 02115 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
ROOM-TEMPERATURE; IRON-RHODIUM; ALLOY; TRANSITIONS; FILMS;
D O I
10.1063/1.4907282
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Chemically ordered B2 FeRh exhibits a remarkable antiferromagnetic-ferromagnetic phase transition that is first order. It thus shows phase coexistence, usually by proceeding though nucleation at random defect sites followed by propagation of phase boundary domain walls. The transition occurs at a temperature that can be varied by doping other metals onto the Rh site. We have taken advantage of this to yield control over the transition process by preparing an epilayer with oppositely directed doping gradients of Pd and Ir throughout its height, yielding a gradual transition that occurs between 350 K and 500 K. As the sample is heated, a horizontal antiferromagnetic-ferromagnetic phase boundary domain wall moves gradually up through the layer, its position controlled by the temperature. This mobile magnetic domain wall affects the magnetisation and resistivity of the layer in a way that can be controlled, and hence exploited, for novel device applications. (C) 2015 Author(s).
引用
收藏
页数:8
相关论文
共 44 条
[1]  
Aharoni A., 1981, B AM PHYS SOC, V26, P1218
[2]   Anomalously high entropy change in FeRh alloy [J].
Annaorazov, MP ;
Nikitin, SA ;
Tyurin, AL ;
Asatryan, KA ;
Dovletov, AK .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (03) :1689-1695
[3]   Effect of capping material on interfacial ferromagnetism in FeRh thin films [J].
Baldasseroni, C. ;
Palsson, G. K. ;
Bordel, C. ;
Valencia, S. ;
Unal, A. A. ;
Kronast, F. ;
Nemsak, S. ;
Fadley, C. S. ;
Borchers, J. A. ;
Maranville, B. B. ;
Hellman, F. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (04)
[4]   Temperature-driven nucleation of ferromagnetic domains in FeRh thin films [J].
Baldasseroni, C. ;
Bordel, C. ;
Gray, A. X. ;
Kaiser, A. M. ;
Kronast, F. ;
Herrero-Albillos, J. ;
Schneider, C. M. ;
Fadley, C. S. ;
Hellman, F. .
APPLIED PHYSICS LETTERS, 2012, 100 (26)
[5]   ELECTRICAL-RESISTIVITY AND MAGNETIC PHASE-TRANSITIONS IN MODIFIED FERH COMPOUNDS [J].
BARANOV, NV ;
BARABANOVA, EA .
JOURNAL OF ALLOYS AND COMPOUNDS, 1995, 219 :139-148
[6]   Predicting magnetostructural trends in FeRh-based ternary systems [J].
Barua, Radhika ;
Jimenez-Villacorta, Felix ;
Lewis, L. H. .
APPLIED PHYSICS LETTERS, 2013, 103 (10)
[7]   GenX:: an extensible X-ray reflectivity refinement program utilizing differential evolution [J].
Bjorck, Matts ;
Andersson, Gabriella .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2007, 40 :1174-1178
[8]   Fe Spin Reorientation across the Metamagnetic Transition in Strained FeRh Thin Films [J].
Bordel, C. ;
Juraszek, J. ;
Cooke, David W. ;
Baldasseroni, C. ;
Mankovsky, S. ;
Minar, J. ;
Ebert, H. ;
Moyerman, S. ;
Fullerton, E. E. ;
Hellman, F. .
PHYSICAL REVIEW LETTERS, 2012, 109 (11)
[9]  
Cherifi RO, 2014, NAT MATER, V13, P345, DOI [10.1038/NMAT3870, 10.1038/nmat3870]
[10]   Asymmetric "melting" and "freezing" kinetics of the magnetostructural phase transition in B2-ordered FeRh epilayers [J].
de Vries, M. A. ;
Loving, M. ;
McLaren, M. ;
Brydson, R. M. D. ;
Liu, X. ;
Langridge, S. ;
Lewis, L. H. ;
Marrows, C. H. .
APPLIED PHYSICS LETTERS, 2014, 104 (23)