Effect of Higher-Order Nonlinearities on Amplification and Squeezing in Josephson Parametric Amplifiers

被引:66
作者
Boutin, Samuel [1 ,2 ]
Toyli, David M. [3 ,4 ]
Venkatramani, Aditya V. [3 ,4 ,6 ]
Eddins, Andrew W. [3 ,4 ]
Siddiqi, Irfan [3 ,4 ]
Blais, Alexandre [1 ,2 ,5 ]
机构
[1] Univ Sherbrooke, Inst Quant, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[3] Univ Calif Berkeley, Dept Phys, Quantum Nanoelect Lab, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Ctr Quantum Coherent Sci, Berkeley, CA 94720 USA
[5] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada
[6] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
QUANTUM; NOISE; LIGHT;
D O I
10.1103/PhysRevApplied.8.054030
中图分类号
O59 [应用物理学];
学科分类号
摘要
Single-mode Josephson-junction-based parametric amplifiers are often modeled as perfect amplifiers and squeezers. We show that in practice, the gain, quantum efficiency, and output field squeezing of these devices are limited by usually neglected higher-order corrections to the idealized model. To arrive at this result, we derive the leading corrections to the lumped-element Josephson parametric amplifier of three common pumping schemes: monochromatic current pump, bichromatic current pump, and monochromatic flux pump. We show that the leading correction for the last two schemes is a single Kerr-type quartic term, while the first scheme contains additional cubic terms. In all cases, we find that the corrections are detrimental to squeezing. In addition, we show that the Kerr correction leads to a strongly phase-dependent reduction of the quantum efficiency of a phase-sensitive measurement. Finally, we quantify the departure from the ideal Gaussian character of the filtered output field from numerical calculation of third-and fourth-order cumulants. Our results show that while a Gaussian output field is expected for an ideal Josephson parametric amplifier, higher-order corrections lead to non-Gaussian effects which increase with both gain and nonlinearity strength. This theoretical study is complemented by experimental characterization of the output field of a flux-driven Josephson parametric amplifier. In addition to a measurement of the squeezing level of the filtered output field, the Husimi Q function of the output field is imaged by the use of a deconvolution technique and compared to numerical results. This work establishes nonlinear corrections to the standard degenerate parametric amplifier model as an important contribution to the Josephson parametric amplifier's squeezing and noise performance.
引用
收藏
页数:22
相关论文
共 80 条
[1]  
[Anonymous], 2014, THESIS
[2]  
[Anonymous], 2003, THEORY NONCLASSICAL, DOI [10.1201/9781482288223, DOI 10.1201/9781482288223]
[3]  
Arfken G. B., 2000, Mathematical Methods for Physicists
[4]  
Barnett S. M., 1997, OXFORD SCI PUBLICATI
[5]   Phase-preserving amplification near the quantum limit with a Josephson ring modulator [J].
Bergeal, N. ;
Schackert, F. ;
Metcalfe, M. ;
Vijay, R. ;
Manucharyan, V. E. ;
Frunzio, L. ;
Prober, D. E. ;
Schoelkopf, R. J. ;
Girvin, S. M. ;
Devoret, M. H. .
NATURE, 2010, 465 (7294) :64-U70
[6]   Magnetic Resonance with Squeezed Microwaves [J].
Bienfait, A. ;
Campagne-Ibarcq, P. ;
Kiilerich, A. H. ;
Zhou, X. ;
Probst, S. ;
Pla, J. J. ;
Schenkel, T. ;
Vion, D. ;
Esteve, D. ;
Morton, J. J. L. ;
Moelmer, K. ;
Bertet, P. .
PHYSICAL REVIEW X, 2017, 7 (04)
[7]   Acceleration of iterative image restoration algorithms [J].
Biggs, DSC ;
Andrews, M .
APPLIED OPTICS, 1997, 36 (08) :1766-1775
[8]   Josephson-junction-embedded transmission-line resonators: From Kerr medium to in-line transmon [J].
Bourassa, J. ;
Beaudoin, F. ;
Gambetta, Jay M. ;
Blais, A. .
PHYSICAL REVIEW A, 2012, 86 (01)
[9]  
Boutin S., 2015, THESIS
[10]   Observing Interferences between Past and Future Quantum States in Resonance Fluorescence [J].
Campagne-Ibarcq, P. ;
Bretheau, L. ;
Flurin, E. ;
Auffeves, A. ;
Mallet, F. ;
Huard, B. .
PHYSICAL REVIEW LETTERS, 2014, 112 (18)