FEDBS: Learning on Non-IID Data in Federated Learning using Batch Normalization

被引:9
|
作者
Idrissi, Meryem Janati [1 ]
Berrada, Ismail [1 ]
Noubir, Guevara [2 ]
机构
[1] Mohammed VI Polytech Univ, Sccs, Benguerir, Morocco
[2] Northeastern Univ, Boston, MA 02115 USA
来源
2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021) | 2021年
关键词
Federated learning; Batch Normalization; Non-HD data;
D O I
10.1109/ICTAI52525.2021.00138
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning (FL) is a well-established distributed machine-learning paradigm that enables training global models on massively distributed data i.e., training on multiowner data. However, classic FL algorithms, such as Federated Averaging (FedAvg), generally underperform when faced with Non-Independent and Identically Distributed (Non-IID) data. Such a problem is aggravated for some hyperparametric methods such as optimizers, regularization, and normalization techniques. In this paper, we introduce FedBS, a new efficient strategy to handle global models having batch normalization layers, in the presence of Non-HD data. FedBS modifies FedAvg by introducing a new aggregation rule at the server-side, while also retaining full compatibility with Batch Normalization (BN). Through our evaluations, we have empirically proven that FedBS outperforms both classical FedAvg, as well as the state-of-the-art FedProx through a comprehensive set of experiments conducted on Cifar10, Mnist, and Fashion-Mnist datasets under various Non-HD data settings. Furthermore, we observed that in some cases, FedBS can be 2x faster than other FL approaches, coupled with higher testing accuracy.
引用
收藏
页码:861 / 867
页数:7
相关论文
共 50 条
  • [31] HFML: heterogeneous hierarchical federated mutual learning on non-IID data
    Li, Yang
    Li, Jie
    Li, Kan
    ANNALS OF OPERATIONS RESEARCH, 2023, 348 (1) : 471 - 487
  • [32] FedNSE: Optimal Node Selection for Federated Learning with Non-IID Data
    Bansal, Sourav
    Bansal, Manav
    Verma, Rohit
    Shorey, Rajeev
    Saran, Huzur
    2023 15TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS, COMSNETS, 2023,
  • [33] Personalized Federated Learning over non-IID Data for Indoor Localization
    Wu, Peng
    Imbiriba, Tales
    Park, Junha
    Kim, Sunwoo
    Closas, Pau
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 421 - 425
  • [34] Training Keyword Spotting Models on Non-IID Data with Federated Learning
    Hard, Andrew
    Partridge, Kurt
    Nguyen, Cameron
    Subrahmanya, Niranjan
    Shah, Aishanee
    Zhu, Pai
    Moreno, Ignacio Lopez
    Mathews, Rajiv
    INTERSPEECH 2020, 2020, : 4343 - 4347
  • [35] Overcoming Noisy Labels and Non-IID Data in Edge Federated Learning
    Xu, Yang
    Liao, Yunming
    Wang, Lun
    Xu, Hongli
    Jiang, Zhida
    Zhang, Wuyang
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 11406 - 11421
  • [36] Knowledge Discrepancy-Aware Federated Learning for Non-IID Data
    Shen, Jianhua
    Chen, Siguang
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [37] Privacy-preserving clustering federated learning for non-IID data
    Luo, Guixun
    Chen, Naiyue
    He, Jiahuan
    Jin, Bingwei
    Zhang, Zhiyuan
    Li, Yidong
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 154 : 384 - 395
  • [38] Exploring personalization via federated representation Learning on non-IID data
    Jing, Changxing
    Huang, Yan
    Zhuang, Yihong
    Sun, Liyan
    Xiao, Zhenlong
    Huang, Yue
    Ding, Xinghao
    NEURAL NETWORKS, 2023, 163 : 354 - 366
  • [39] Differentially Private Auction Design for Federated Learning With non-IID Data
    Ren, Kean
    Liao, Guocheng
    Ma, Qian
    Chen, Xu
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (05) : 2236 - 2247
  • [40] SHFL: Selective Hierarchical Federated Learning for Non-IID Data Distribution
    Tseng, Fan-Hsun
    Lai, Yu-Teng
    2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING, 2024,