Wave function multifractality and dephasing at metal-insulator and quantum Hall transitions

被引:39
作者
Burmistrov, I. S. [1 ,2 ]
Bera, S. [3 ,4 ]
Evers, F. [3 ,4 ]
Gornyi, I. V. [3 ,5 ]
Mirlin, A. D. [3 ,4 ,6 ]
机构
[1] LD Landau Theoret Phys Inst, Moscow 117940, Russia
[2] Moscow Inst Phys & Technol, Dept Theoret Phys, Moscow 141700, Russia
[3] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[4] Karlsruhe Inst Technol, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
[5] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[6] Petersburg Nucl Phys Inst, St Petersburg 188300, Russia
关键词
Anderson transitions; Quantum Hall effect; Dephasing; Multifractality; NONLINEAR SIGMA-MODEL; CRITICAL-BEHAVIOR; ANOMALOUS DIMENSIONS; PARTICIPATION RATIO; BETA-FUNCTION; SI-P; CONDUCTIVITY; DELOCALIZATION; LOCALIZATION; TEMPERATURE;
D O I
10.1016/j.aop.2011.01.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the critical behavior of the dephasing rate induced by short-range electron-electron interaction near an Anderson transition of metal-insulator or quantum Hall type. The corresponding exponent characterizes the scaling of the transition width with temperature. Assuming no spin degeneracy, the critical behavior can be studied by performing the scaling analysis in the vicinity of the non-interacting fixed point, since the latter is stable with respect to the interaction. We combine an analytical treatment (that includes the identification of operators responsible for dephasing in the formalism of the non-linear sigma-model and the corresponding renormalization-group analysis in 2 + epsilon dimensions) with numerical simulations on the Chalker-Coddington network model of the quantum Hall transition. Finally, we discuss the current understanding of the Coulomb interaction case and the available experimental data. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1457 / 1478
页数:22
相关论文
共 80 条
[21]   INTERACTIONS AND THE ANDERSON TRANSITION [J].
FLEISHMAN, L ;
ANDERSON, PW .
PHYSICAL REVIEW B, 1980, 21 (06) :2366-2377
[22]   Interacting electrons in disordered wires:: Anderson localization and low-T transport -: art. no. 206603 [J].
Gornyi, IV ;
Mirlin, AD ;
Polyakov, DG .
PHYSICAL REVIEW LETTERS, 2005, 95 (20)
[23]  
Helgason S., 2000, Groups and Geometric Analysis, Integral Geometry, Invariant Differential Operators and Spherical Functions
[24]   Field- and concentration-tuned scaling of a quantum phase transition in a magnetically doped semiconductor [J].
Helgren, E ;
Zeng, L ;
Burch, K ;
Basov, D ;
Hellman, F .
PHYSICAL REVIEW B, 2006, 73 (15)
[25]   ISOMORPHISM AND THE BETA-FUNCTION OF THE NON-LINEAR SIGMA-MODEL IN SYMMETRIC-SPACES [J].
HIKAMI, S .
NUCLEAR PHYSICS B, 1983, 215 (04) :555-565
[26]   CRITICAL-BEHAVIOR OF THE ZERO-TEMPERATURE CONDUCTIVITY IN COMPENSATED SILICON, SI-(P,B) [J].
HIRSCH, MJ ;
THOMANSCHEFSKY, U ;
HOLCOMB, DF .
PHYSICAL REVIEW B, 1988, 37 (14) :8257-8261
[27]   CALCULATION OF ANOMALOUS DIMENSIONS FOR THE NONLINEAR SIGMA MODEL [J].
HOF, D ;
WEGNER, F .
NUCLEAR PHYSICS B, 1986, 275 (04) :561-579
[28]  
Hohls F, 2002, PHYS REV LETT, V88, DOI [10.1103/PhysRevLett.88.036802, 10.1103/PhysRevB.88.036802]
[29]   High frequency conductivity in the quantum Hall regime [J].
Hohls, F ;
Zeitler, U ;
Haug, RJ .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5124-5127
[30]   SCALING THEORY OF THE INTEGER QUANTUM HALL-EFFECT [J].
HUCKESTEIN, B .
REVIEWS OF MODERN PHYSICS, 1995, 67 (02) :357-396