Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications

被引:166
作者
Sun, Huarui [1 ]
Simon, Roland B. [1 ]
Pomeroy, James W. [1 ]
Francis, Daniel [2 ]
Faili, Firooz [2 ]
Twitchen, Daniel J. [2 ]
Kuball, Martin [1 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, CDTR, Bristol BS8 1TL, Avon, England
[2] Element Six Technol US Corp, Santa Clara, CA 95054 USA
基金
英国工程与自然科学研究理事会;
关键词
BOUNDARY RESISTANCE; ALGAN/GAN HEMTS; THIN-FILMS; MICROSTRUCTURE; CONDUCTIVITY; SUBSTRATE;
D O I
10.1063/1.4913430
中图分类号
O59 [应用物理学];
学科分类号
摘要
Integration of chemical vapor deposited polycrystalline diamond offers promising thermal performance for GaN-based high power radio frequency amplifiers. One limiting factor is the thermal barrier at the GaN to diamond interface, often referred to as the effective thermal boundary resistance (TBReff). Using a combination of transient thermoreflectance measurement, finite element modeling and microstructural analysis, the TBReff of GaN-on-diamond wafers is shown to be dominated by the SiNx interlayer for diamond growth seeding, with additional impacts from the diamond nucleation surface. By decreasing the SiNx layer thickness and minimizing the diamond nucleation region, TBReff can be significantly reduced, and a TBReff as low as 12 m(2)K/GW is demonstrated. This enables a major improvement in GaN-on-diamond transistor thermal resistance with respect to GaN-on-SiC wafers. A further reduction in TBReff towards the diffuse mismatch limit is also predicted, demonstrating the full potential of using diamond as the heat spreading substrate. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 24 条
[1]   Influence of strain on thermal conductivity of silicon nitride thin films [J].
Alam, M. T. ;
Manoharan, M. P. ;
Haque, M. A. ;
Muratore, C. ;
Voevodin, A. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2012, 22 (04)
[2]   Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films [J].
Angadi, Maki A. ;
Watanabe, Taku ;
Bodapati, Arun ;
Xiao, Xingcheng ;
Auciello, Orlando ;
Carlisle, John A. ;
Eastman, Jeffrey A. ;
Keblinski, Pawel ;
Schelling, Patrick K. ;
Phillpot, Simon R. .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (11)
[3]   Thermal Characterization of Si3N4 Thin Films Using Transient Thermoreflectance Technique [J].
Bai, Suyuan ;
Tang, Zhenan ;
Huang, Zhengxing ;
Yu, Jun .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (08) :3238-3243
[4]  
Blevins J.D., 2014, Int. Conf. Compd. Semicond. Manuf. Technol, P105
[5]  
Cho J., 2014, P IEEE INT C THERM T, P1186
[6]   Phonon scattering in strained transition layers for GaN heteroepitaxy [J].
Cho, Jungwan ;
Li, Yiyang ;
Hoke, William E. ;
Altman, David H. ;
Asheghi, Mehdi ;
Goodson, Kenneth E. .
PHYSICAL REVIEW B, 2014, 89 (11)
[7]   Improved Thermal Interfaces of GaN-Diamond Composite Substrates for HEMT Applications [J].
Cho, Jungwan ;
Li, Zijian ;
Bozorg-Grayeli, Elah ;
Kodama, Takashi ;
Francis, Daniel ;
Ejeckam, Felix ;
Faili, Firooz ;
Asheghi, Mehdi ;
Goodson, Kenneth E. .
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2013, 3 (01) :79-85
[8]   Low Thermal Resistances at GaN-SiC Interfaces for HEMT Technology [J].
Cho, Jungwan ;
Bozorg-Grayeli, Elah ;
Altman, David H. ;
Asheghi, Mehdi ;
Goodson, Kenneth E. .
IEEE ELECTRON DEVICE LETTERS, 2012, 33 (03) :378-380
[9]   AlGaN/GaN HEMTs on diamond substrate with over 7W/mm output power density at 10 GHz [J].
Dumka, D. C. ;
Chou, T. M. ;
Faili, F. ;
Francis, D. ;
Ejeckam, F. .
ELECTRONICS LETTERS, 2013, 49 (20) :1298-U88
[10]  
Dumka D. C., 2013, P 34 ANN IEEE COMP S, pF4