Approximate Confidence and Prediction Intervals for Least Squares Support Vector Regression

被引:111
作者
De Brabanter, Kris [1 ]
De Brabanter, Jos [2 ]
Suykens, Johan A. K. [1 ]
De Moor, Bart [1 ]
机构
[1] Katholieke Univ Leuven, Res Div SCD, Dept Elect Engn, B-3001 Louvain, Belgium
[2] KaHo Sint Lieven Associatie KU Leuven, Dept Ind Ingenieur, B-9000 Ghent, Belgium
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2011年 / 22卷 / 01期
关键词
Bias; confidence interval; heteroscedasticity; homoscedasticity; kernel-based regression; variance; NEURAL-NETWORKS; WILD BOOTSTRAP; BANDS; DEVIATIONS;
D O I
10.1109/TNN.2010.2087769
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bias-corrected approximate 100(1 - alpha)% pointwise and simultaneous confidence and prediction intervals for least squares support vector machines are proposed. A simple way of determining the bias without estimating higher order derivatives is formulated. A variance estimator is developed that works well in the homoscedastic and heteroscedastic case. In order to produce simultaneous confidence intervals, a simple. Sidak correction and a more involved correction (based on upcrossing theory) are used. The obtained confidence intervals are compared to a state-of-the-art bootstrap-based method. Simulations show that the proposed method obtains similar intervals compared to the bootstrap at a lower computational cost.
引用
收藏
页码:110 / 120
页数:11
相关论文
共 41 条
[21]   Local polynomial estimators of the volatility function in nonparametric autoregression [J].
Hardle, W ;
Tsybakov, A .
JOURNAL OF ECONOMETRICS, 1997, 81 (01) :223-242
[22]  
Hardle W., 1989, P 47 SESS INT STAT I, P59
[23]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&
[24]  
Isermann R., 2005, Fault-diagnosis systems: an introduction from fault detection to fault tolerance
[25]   PROBABILITIES OF MAXIMAL DEVIATIONS FOR NONPARAMETRIC REGRESSION FUNCTION ESTIMATES [J].
JOHNSTON, GJ .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (03) :402-414
[26]  
Kersting K., 2007, P 24 INT C MACH LEAR, P393, DOI DOI 10.1145/1273496.1273546
[27]   CONFIDENCE BANDS FOR REGRESSION-FUNCTIONS [J].
KNAFL, G ;
SACKS, J ;
YLVISAKER, D .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1985, 80 (391) :683-691
[28]   BOOTSTRAP PROCEDURES UNDER SOME NON-IID MODELS [J].
LIU, RY .
ANNALS OF STATISTICS, 1988, 16 (04) :1696-1708
[29]   BOOTSTRAP AND WILD BOOTSTRAP FOR HIGH-DIMENSIONAL LINEAR-MODELS [J].
MAMMEN, E .
ANNALS OF STATISTICS, 1993, 21 (01) :255-285
[30]   An Improved Algorithm for the Solution of the Regularization Path of Support Vector Machine [J].
Ong, Chong-Jin ;
Shao, Shiyun ;
Yang, Jianbo .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (03) :451-462