Approximate Confidence and Prediction Intervals for Least Squares Support Vector Regression

被引:111
作者
De Brabanter, Kris [1 ]
De Brabanter, Jos [2 ]
Suykens, Johan A. K. [1 ]
De Moor, Bart [1 ]
机构
[1] Katholieke Univ Leuven, Res Div SCD, Dept Elect Engn, B-3001 Louvain, Belgium
[2] KaHo Sint Lieven Associatie KU Leuven, Dept Ind Ingenieur, B-9000 Ghent, Belgium
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2011年 / 22卷 / 01期
关键词
Bias; confidence interval; heteroscedasticity; homoscedasticity; kernel-based regression; variance; NEURAL-NETWORKS; WILD BOOTSTRAP; BANDS; DEVIATIONS;
D O I
10.1109/TNN.2010.2087769
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bias-corrected approximate 100(1 - alpha)% pointwise and simultaneous confidence and prediction intervals for least squares support vector machines are proposed. A simple way of determining the bias without estimating higher order derivatives is formulated. A variance estimator is developed that works well in the homoscedastic and heteroscedastic case. In order to produce simultaneous confidence intervals, a simple. Sidak correction and a more involved correction (based on upcrossing theory) are used. The obtained confidence intervals are compared to a state-of-the-art bootstrap-based method. Simulations show that the proposed method obtains similar intervals compared to the bootstrap at a lower computational cost.
引用
收藏
页码:110 / 120
页数:11
相关论文
共 41 条
[1]  
[Anonymous], 1996, Local polynomial modelling and its applications
[2]  
[Anonymous], 2003, Semiparametric Regression
[3]  
[Anonymous], 1999, Local regression and likelihood
[4]  
[Anonymous], LECT NOTES CONTROL I
[5]  
Bernardo J.M., 2000, BAYESIAN THEORY
[6]   SOME GLOBAL MEASURES OF DEVIATIONS OF DENSITY-FUNCTION ESTIMATES [J].
BICKEL, PJ ;
ROSENBLA.M .
ANNALS OF STATISTICS, 1973, 1 (06) :1071-1095
[7]  
Bishop CM, 1997, ADV NEUR IN, V9, P347
[8]  
Cawley GC, 2006, LECT NOTES ARTIF INT, V3944, P56
[9]   Heteroscedastic kernel ridge regression [J].
Cawley, GC ;
Talbot, NLC ;
Foxall, RJ ;
Dorling, SR ;
Mandic, DP .
NEUROCOMPUTING, 2004, 57 :105-124
[10]   Confidence interval prediction for neural network models [J].
Chryssolouris, G ;
Lee, M ;
Ramsey, A .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (01) :229-232