On the critical exponent for nonlinear Schrodinger equations without gauge invariance in exterior domains

被引:6
|
作者
Jleli, Mohamed [1 ]
Samet, Bessem [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
关键词
Critical exponent; Schrodinger equation; Exterior domain; BLOW-UP; GLOBAL-SOLUTIONS; NONEXISTENCE;
D O I
10.1016/j.jmaa.2018.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain the critical exponent for the Dirichlet exterior problem iu(t) + Delta u = lambda vertical bar u vertical bar(p) in (0,infinity) x D-c, u(t,x) = f(x), in (0,infinity) x partial derivative D, u(0,x) = g(x), in D-c, where u is a complex valued function, D = (B(0,1) over bar is the closed unit ball in R-N, N >= 3, D-c is its complement, p > 1, lambda epsilon C\{0}, f not equivalent to 0, f epsilon L-1(partial derivative D; C) and g epsilon L-loc(1)(<(D-c)over bar>C). More precisely, we show that . if 1 < p < p* := N/N-2 and Re lambda . Im integral(Dc) g(x)h(x) dx < 0 and Re lambda . Re integral(partial derivative D)f (x)dS(x) < 0 or Im lambda . Re integral(Dc)g(x)h(x) dx > 0 and Im lambda . Im integral(partial derivative D)f (x) dS(x) < 0, where h is a certain harmonic function, then the considered problem possesses no global weak solution. . If p > p*, then the problem admits global solutions for some lambda, f and g. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:188 / 201
页数:14
相关论文
共 50 条
  • [11] SMALL DATA BLOW-UP OF SOLUTIONS TO NONLINEAR SCHRODINGER EQUATIONS WITHOUT GAUGE INVARIANCE IN L2
    Ren, Yuanyuan
    Li, Yongsheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [12] Sharp criterion of global existence for a class of nonlinear Schrodinger equations with critical exponent
    Xu Runzhang
    Wang Xuemei
    Niu Yi
    Zhang Mingyou
    Liu Jie
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 107 : 46 - 51
  • [13] A POSTERIORI ERROR ANALYSIS FOR EVOLUTION NONLINEAR SCHRODINGER EQUATIONS UP TO THE CRITICAL EXPONENT
    Katsaounis, Theodoros
    Kyza, Irene
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) : 1405 - 1434
  • [14] Critical exponent for semi-linear wave equations with double damping terms in exterior domains
    Marcello D’Abbicco
    Ryo Ikehata
    Hiroshi Takeda
    Nonlinear Differential Equations and Applications NoDEA, 2019, 26
  • [15] BOUNDARY STABILIZATION OF THE WAVE AND SCHRODINGER EQUATIONS IN EXTERIOR DOMAINS
    Aloui, Lassaad
    Khenissi, Moez
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (03) : 919 - 934
  • [16] Critical exponent for semi-linear wave equations with double damping terms in exterior domains
    D'Abbicco, Marcello
    Ikehata, Ryo
    Takeda, Hiroshi
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (06):
  • [17] The nonexistence of global solutions for a time fractional nonlinear Schrodinger equation without gauge invariance
    Zhang, Quanguo
    Sun, Hong-Rui
    Li, Yaning
    APPLIED MATHEMATICS LETTERS, 2017, 64 : 119 - 124
  • [18] Some nonexistence results for space-time fractional Schrodinger equations without gauge invariance
    Kirane, Mokhtar
    Fino, Ahmad Z.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (04) : 1361 - 1387
  • [19] CONDITIONAL INVARIANCE OF THE NONLINEAR SCHRODINGER-EQUATIONS
    FUSHCHICH, VD
    CHOPIK, VI
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1990, (04): : 29 - 32
  • [20] Limit profiles and the existence of bound-states in exterior domains for fractional Choquard equations with critical exponent
    Ye, Fumei
    Yu, Shubin
    Tang, Chun-Lei
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)