POSITIVE SOLUTIONS OF PERTURBED ELLIPTIC PROBLEMS INVOLVING HARDY POTENTIAL AND CRITICAL SOBOLEV EXPONENT

被引:0
作者
Zhang, Jing [1 ]
Ma, Shiwang [2 ,3 ]
机构
[1] Inner Mongolia Normal Univ, Math Sci Coll, Hohhot 010022, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2016年 / 21卷 / 06期
基金
中国国家自然科学基金;
关键词
Positive solutions; critical exponent; pertubation method; anisotropic problem; EQUATIONS; INEQUALITIES; EXISTENCE; STATES;
D O I
10.3934/dcdsb.2016033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following nonlinear Schrodinger equations with hardy potential and critical Sobolev exponent {-Delta u + lambda a(x)u(q) = mu/vertical bar x vertical bar(2) + vertical bar u vertical bar(2*) (-2)u, in R-N , u > 0, in D-1,D-2 (R-N), (1) where 2* = 2N/N-2 is the critical Sobolev exponent, 0 <= mu < mu = (N-2)(2)/4, a(x) is an element of C(R-N). We first use an abstract perturbation method in critical point theory to obtain the existence of positive solutions of ( I) for small value of Secondly, we focus on an anisotropic elliptic equation of the form -div(B-lambda(x)del u) + lambda a(x)u(q) = mu u/vertical bar x vertical bar(2) vertical bar u vertical bar(2)* (-2) u,x is an element of R-N. (2) The same abstract method is used to yield existence result of positive solutions of (2) for small value of vertical bar lambda vertical bar.
引用
收藏
页码:1999 / 2009
页数:11
相关论文
共 12 条
[1]   Variational perturbative methods and bifurcation of bound states from the essential spectrum [J].
Ambrosetti, A ;
Badiale, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :1131-1161
[2]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[3]   Perturbation of Δu plus u(N+2)/(N-2)=0, the scalar curvature problem in RN, and related topics [J].
Ambrosetti, A ;
Azorero, JG ;
Peral, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 165 (01) :117-149
[4]  
Ambrosetti A., 2006, , Progress in Mathematics
[5]   Perturbation results for an anisotropic Schrodinger equation via a variational method [J].
Badiale, M ;
Azorero, JG ;
Peral, I .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (02) :201-230
[6]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[7]  
Catrina F, 2001, COMMUN PUR APPL MATH, V54, P229, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO
[8]  
2-I
[9]   Positive solutions to perturbed elliptic problems in RN involving critical Sobolev exponent [J].
Cingolani, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (08) :1165-1178
[10]   THE ROLE OF THE GREENS-FUNCTION IN A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT [J].
REY, O .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 89 (01) :1-52