Transcription factors and miRNAs that regulate fetal to adult CFTR expression change are new targets for cystic fibrosis

被引:59
作者
Viart, Victoria [1 ,2 ,3 ]
Bergougnoux, Anne [1 ,3 ]
Bonini, Jennifer [1 ,2 ]
Varilh, Jessica [1 ,3 ]
Chiron, Raphael [4 ]
Tabary, Olivier [5 ,6 ]
Molinari, Nicolas [7 ,8 ]
Claustres, Mireille [1 ,2 ,3 ]
Taulan-Cadars, Magali [1 ,2 ]
机构
[1] INSERM, U827, Lab Genet Malad Rares, Montpellier, France
[2] Univ Montpellier I, UFR Med, Montpellier, France
[3] CHU Montpellier, Lab Genet Mol, Montpellier, France
[4] CHU Montpellier, CRCM, Montpellier, France
[5] INSERM, UMR S 938, CDR St Antoine, Paris, France
[6] Univ Paris 06, Paris, France
[7] CHU Montpellier, Dept Informat Med, Montpellier, France
[8] Univ Montpellier I, UMR 729, MISTEA, Montpellier, France
关键词
TRANSMEMBRANE CONDUCTANCE REGULATOR; PROMOTER REGION; GENE-EXPRESSION; POSTTRANSCRIPTIONAL REGULATION; EPITHELIAL-CELLS; LUNG DEVELOPMENT; MICRORNA; ELEMENT; MUTATION; TISSUES;
D O I
10.1183/09031936.00113214
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
The CFTR gene displays a tightly regulated tissue-specific and temporal expression. Mutations in this gene cause cystic fibrosis (CF). In this study we wanted to identify trans-regulatory elements responsible for CFTR differential expression in fetal and adult lung, and to determine the importance of inhibitory motifs in the CFTR-3 ' UTR with the aim of developing new tools for the correction of disease-causing mutations within CFTR. We show that lung development-specific transcription factors (FOXA, C/EBP) and microRNAs (miR-101, miR-145, miR-384) regulate the switch from strong fetal to very low CFTR expression after birth. By using miRNome profiling and gene reporter assays, we found that miR-101 and miR-145 are specifically upregulated in adult lung and that miR-101 directly acts on its cognate site in the CFTR-3 ' UTR in combination with an overlapping AU-rich element. We then designed miRNA-binding blocker oligonudeotides (MBBOs) to prevent binding of several miRNAs to the CFTR-3 ' UTR and tested them in primary human nasal epithelial cells from healthy individuals and CF patients carrying the p.Phe508del CFTR mutation. These MBBOs rescued CFTR channel activity by increasing CFTR mRNA and protein levels. Our data offer new understanding of the control of the CFTR gene regulation and new putative correctors for cystic fibrosis.
引用
收藏
页码:116 / 128
页数:13
相关论文
共 53 条
[31]   Post-Transcriptional Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Expression and Function by MicroRNAs [J].
Ramachandran, Shyam ;
Karp, Philip H. ;
Osterhaus, Samantha R. ;
Jiang, Peng ;
Wohlford-Lenane, Christine ;
Lennox, Kim A. ;
Jacobi, Ashley M. ;
Praekh, Kal ;
Rose, Scott D. ;
Behlke, Mark A. ;
Xing, Yi ;
Welsh, Michael J. ;
McCray, Paul B., Jr. .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2013, 49 (04) :544-551
[32]   A microRNA network regulates expression and biosynthesis of wild-type and ΔF508 mutant cystic fibrosis transmembrane conductance regulator [J].
Ramachandran, Shyam ;
Karp, Philip H. ;
Jiang, Peng ;
Ostedgaard, Lynda S. ;
Walz, Amy E. ;
Fisher, John T. ;
Keshavjee, Shaf ;
Lennox, Kim A. ;
Jacobi, Ashley M. ;
Rose, Scott D. ;
Behlke, Mark A. ;
Welsh, Michael J. ;
Xing, Yi ;
McCray, Paul B., Jr. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (33) :13362-13367
[33]   A CFTR Potentiator in Patients with Cystic Fibrosis and the G551D Mutation [J].
Ramsey, Bonnie W. ;
Davies, Jane ;
McElvaney, N. Gerard ;
Tullis, Elizabeth ;
Bell, Scott C. ;
Drevinek, Pavel ;
Griese, Matthias ;
McKone, Edward F. ;
Wainwright, Claire E. ;
Konstan, Michael W. ;
Moss, Richard ;
Ratjen, Felix ;
Sermet-Gaudelus, Isabelle ;
Rowe, Steven M. ;
Dong, Qunming ;
Rodriguez, Sally ;
Yen, Karl ;
Ordonez, Claudia ;
Elborn, J. Stuart .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (18) :1663-1672
[34]   Binding of serum response factor to cystic fibrosis transmembrane conductance regulator CArG-like elements, as a new potential CFTR transcriptional regulation pathway [J].
René, C ;
Taulan, M ;
Iral, F ;
Doudement, J ;
L'Honoré, A ;
Gerbon, C ;
Demaille, J ;
Claustres, M ;
Romey, MC .
NUCLEIC ACIDS RESEARCH, 2005, 33 (16) :5271-5290
[35]  
RIORDAN JR, 1989, SCIENCE, V245, P1066
[36]  
Romey MC, 1999, J MED GENET, V36, P263
[37]   A naturally occurring sequence variation that creates a YY1 element is associated with increased cystic fibrosis transmembrane conductance regulator gene expression [J].
Romey, MC ;
Pallares-Ruiz, N ;
Mange, A ;
Mettling, C ;
Peytavi, R ;
Demaille, J ;
Claustres, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (05) :3561-3567
[38]   Azithromycin fails to reduce inflammation in cystic fibrosis airway epithelial cells [J].
Saint-Criq, Vinciane ;
Ruffin, Manon ;
Rebeyrol, Carine ;
Guillot, Loic ;
Jacquot, Jacky ;
Clement, Annick ;
Tabary, Olivier .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2012, 674 (01) :1-6
[39]   Coupling transcriptional and post-transcriptional miRNA regulation in the control of cell fate [J].
Shalgi, Reut ;
Brosh, Ran ;
Oren, Moshe ;
Pilpel, Yitzhak ;
Rotter, Varda .
AGING-US, 2009, 1 (09) :762-770
[40]   Genetic therapies for cystic fibrosis lung disease [J].
Sinn, Patrick L. ;
Anthony, Reshma M. ;
McCray, Paul B., Jr. .
HUMAN MOLECULAR GENETICS, 2011, 20 :R79-R86