The STRANDS Project Long-Term Autonomy in Everyday Environments

被引:112
作者
Hawes, Nick [1 ]
Burbridge, Chris [1 ]
Jovan, Ferdian [1 ]
Kunze, Lars [1 ]
Lacerda, Bruno [1 ]
Mudrova, Lenka [1 ]
Young, Jay [1 ]
Wyatt, Jeremy [1 ]
Hebesberger, Denise [2 ,3 ]
Koertner, Tobias [2 ,3 ]
Ambrus, Rares [4 ]
Bore, Nils [4 ]
Folkesson, John [4 ]
Jensfelt, Patric [4 ]
Beyer, Lucas [5 ]
Hermans, Alexander [5 ]
Leibe, Bastian [5 ]
Aldoma, Aitor [6 ]
Faeulhammer, Thomas [6 ]
Zillich, Michael [6 ]
Vincze, Markus [6 ]
Chinellato, Eris [7 ]
Al-Omari, Muhannad [8 ]
Duckworth, Paul [8 ]
Gatsoulis, Yiannis [8 ]
Hogg, David C. [8 ]
Cohn, Anthony G. [8 ]
Dondrup, Christian [9 ]
Fentanes, Jaime Pulido [9 ]
Krajnik, Tomas [9 ]
Santos, Joao M. [9 ]
Duckett, Tom [9 ]
Hanheide, Marc [9 ]
机构
[1] Univ Birmingham, Sch Comp Sci, Birmingham, W Midlands, England
[2] Akad Altersforsch Haus Barmherzigkeit, Vienna, Austria
[3] Donau Univ Krems, Krems An Der Donau, Austria
[4] KTH Royal Inst Technol, Stockholm, Sweden
[5] Rheinisch Westfal Tech Hsch Aachen, Aachen, Germany
[6] Tech Univ Wien, Vienna, Austria
[7] Middlesex Univ London, Fac Sci & Technol, London, England
[8] Univ Leeds, Leeds, W Yorkshire, England
[9] Univ Lincoln, Brayford Pool, Lincs, England
关键词
Intelligent robots;
D O I
10.1109/MRA.2016.2636359
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Thanks to the efforts of the robotics and autonomous systems community, the myriad applications and capacities of robots are ever increasing. There is increasing demand from end users for autonomous service robots that can operate in real environments for extended periods. In the Spatiotemporal Representations and Activities for Cognitive Control in Long-Term Scenarios (STRANDS) project (http://strandsproject.eu), we are tackling this demand head-on by integrating state-of-the-art artificial intelligence and robotics research into mobile service robots and deploying these systems for long-term installations in security and care environments. Our robots have been operational for a combined duration of 104 days over four deployments, autonomously performing end-user-defined tasks and traversing 116 km in the process. In this article, we describe the approach we used to enable long-term autonomous operation in everyday environments and how our robots are able to use their long run times to improve their own performance. © 1994-2011 IEEE.
引用
收藏
页码:146 / 156
页数:11
相关论文
共 16 条
[1]  
Ambrus R, 2015, IEEE INT C INT ROBOT, P5678, DOI 10.1109/IROS.2015.7354183
[2]  
[Anonymous], ACMIEEE INT CONF HUM
[3]   The 1,000-km Challenge: Insights and Quantitative and Qualitative Results [J].
Biswas, Joydeep ;
Veloso, Manuela .
IEEE INTELLIGENT SYSTEMS, 2016, 31 (03) :86-96
[4]   A Computational Model of Human-Robot Spatial Interactions Based on a Qualitative Trajectory Calculus [J].
Dondrup, Christian ;
Bellotto, Nicola ;
Hanheide, Marc ;
Eder, Kerstin ;
Leonards, Ute .
ROBOTICS, 2015, 4 (01) :63-102
[5]  
Duckworth P, 2016, AAMAS'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, P1043
[6]   Autonomous Learning of Object Models on a Mobile Robot [J].
Faeulhammer, Thomas ;
Ambrus, Rares ;
Burbridge, Chris ;
Zillich, Michael ;
Folkesson, John ;
Hawes, Nick ;
Jensfelt, Patric ;
Vincze, Markus .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (01) :26-33
[7]  
Hebesberger D., 2015, P WORKSH BRIDG US NE
[8]  
Jafari OH, 2014, IEEE INT CONF ROBOT, P5636, DOI 10.1109/ICRA.2014.6907688
[9]  
Krajník T, 2014, IEEE INT CONF ROBOT, P3706, DOI 10.1109/ICRA.2014.6907396
[10]  
Kunze L, 2014, IEEE INT C INT ROBOT, P2910, DOI 10.1109/IROS.2014.6942963