Incorporating Biological Pathways via a Markov Random Field Model in Genome-Wide Association Studies

被引:51
作者
Chen, Min [1 ]
Cho, Judy
Zhao, Hongyu [2 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Div Biostat, Dept Clin Sci, Dallas, TX 75390 USA
[2] Yale Univ, Ctr Stat Genom & Prote, Dept Epidemiol & Publ Hlth, New Haven, CT USA
关键词
STATISTICAL-ANALYSIS; GENE-EXPRESSION; CROHNS-DISEASE; PRIORITIZATION; NETWORK;
D O I
10.1371/journal.pgen.1001353
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genome-wide association studies (GWAS) examine a large number of markers across the genome to identify associations between genetic variants and disease. Most published studies examine only single markers, which may be less informative than considering multiple markers and multiple genes jointly because genes may interact with each other to affect disease risk. Much knowledge has been accumulated in the literature on biological pathways and interactions. It is conceivable that appropriate incorporation of such prior knowledge may improve the likelihood of making genuine discoveries. Although a number of methods have been developed recently to prioritize genes using prior biological knowledge, such as pathways, most methods treat genes in a specific pathway as an exchangeable set without considering the topological structure of a pathway. However, how genes are related with each other in a pathway may be very informative to identify association signals. To make use of the connectivity information among genes in a pathway in GWAS analysis, we propose a Markov Random Field (MRF) model to incorporate pathway topology for association analysis. We show that the conditional distribution of our MRF model takes on a simple logistic regression form, and we propose an iterated conditional modes algorithm as well as a decision theoretic approach for statistical inference of each gene's association with disease. Simulation studies show that our proposed framework is more effective to identify genes associated with disease than a single gene-based method. We also illustrate the usefulness of our approach through its applications to a real data example.
引用
收藏
页数:13
相关论文
共 29 条
[1]   Gene prioritization through genomic data fusion [J].
Aerts, S ;
Lambrechts, D ;
Maity, S ;
Van Loo, P ;
Coessens, B ;
De Smet, F ;
Tranchevent, LC ;
De Moor, B ;
Marynen, P ;
Hassan, B ;
Carmeliet, P ;
Moreau, Y .
NATURE BIOTECHNOLOGY, 2006, 24 (05) :537-544
[2]  
[Anonymous], 1980, MARKOV RANDOM FIELDS, DOI DOI 10.1090/CONM/001
[3]   Comparisons of Multi-Marker Association Methods to Detect Association Between a Candidate Region and Disease [J].
Ballard, David H. ;
Cho, Judy ;
Zhao, Hongyu .
GENETIC EPIDEMIOLOGY, 2010, 34 (03) :201-212
[4]  
Ballard DH, 2009, THESIS YALE U
[5]   Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease [J].
Barrett, Jeffrey C. ;
Hansoul, Sarah ;
Nicolae, Dan L. ;
Cho, Judy H. ;
Duerr, Richard H. ;
Rioux, John D. ;
Brant, Steven R. ;
Silverberg, Mark S. ;
Taylor, Kent D. ;
Barmada, M. Michael ;
Bitton, Alain ;
Dassopoulos, Themistocles ;
Datta, Lisa Wu ;
Green, Todd ;
Griffiths, Anne M. ;
Kistner, Emily O. ;
Murtha, Michael T. ;
Regueiro, Miguel D. ;
Rotter, Jerome I. ;
Schumm, L. Philip ;
Steinhart, A. Hillary ;
Targan, Stephan R. ;
Xavier, Ramnik J. ;
Libioulle, Cecile ;
Sandor, Cynthia ;
Lathrop, Mark ;
Belaiche, Jacques ;
Dewit, Olivier ;
Gut, Ivo ;
Heath, Simon ;
Laukens, Debby ;
Mni, Myriam ;
Rutgeerts, Paul ;
Van Gossum, Andre ;
Zelenika, Diana ;
Franchimont, Denis ;
Hugot, Jean-Pierre ;
de Vos, Martine ;
Vermeire, Severine ;
Louis, Edouard ;
Cardon, Lon R. ;
Anderson, Carl A. ;
Drummond, Hazel ;
Nimmo, Elaine ;
Ahmad, Tariq ;
Prescott, Natalie J. ;
Onnie, Clive M. ;
Fisher, Sheila A. ;
Marchini, Jonathan ;
Ghori, Jilur .
NATURE GENETICS, 2008, 40 (08) :955-962
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]  
BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
[8]  
BESAG J, 1986, J R STAT SOC B, V48, P259
[9]  
BESAG JE, 1972, J ROY STAT SOC B, V34, P75
[10]  
Chun H, 2011, IDENTIFICATION UNPUB