Ba2M(C3N3O3)2 (M = Mg, Ca): potential UV birefringent materials with strengthened optical anisotropy originating from the (C3N3O3)3- group

被引:70
作者
Li, Zhuang [1 ,2 ]
Liang, Fei [1 ,2 ]
Guo, Yangwu [1 ,2 ]
Lin, Zheshuai [1 ]
Yao, Jiyong [1 ]
Zhang, Guochun [1 ]
Yin, Wenlong [3 ]
Wu, Yicheng [1 ,4 ]
Chen, Chuangtian [1 ]
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, Ctr Crystal Res & Dev, Key Lab Funct Crystals & Laser Technol, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[3] China Acad Engn Phys, Inst Chem Mat, Mianyang 621900, Peoples R China
[4] Tianjin Univ Technol, Inst Funct Crystal Mat, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
CRYSTAL; GROWTH; COEFFICIENTS;
D O I
10.1039/c8tc04710c
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Demands for UV birefringent materials are growing dramatically owing to the rapid development of ultraviolet technology. Here, a new family of UV birefringent materials, Ba2Mg(C3N3O3)(2) (BMCY) and Ba2Ca(C3N3O3)(2) (BCCY), have been successfully discovered. It is the first time that the excellent birefringent properties of cyanurates have been studied. These materials exhibit an extremely large birefringence (n = 0.728-0.351 and 0.771-0.346 from 230 nm to 800 nm for BMCY and BCCY, respectively), much larger than that of the commercial UV birefringent crystal -BaB2O4 (-BBO) (n = 0.12@532 nm). Our study indicates that the impressive optical properties of BMCY and BCCY stem from the strengthened optical anisotropy of the planar (C3N3O3)(3-) group compared with the isoelectronic (B3O6)(3-) group. Besides, its congruent-melting properties make it feasible to grow a bulk crystal by the Bridgman-Stockbarger technique. The extraordinary properties of BMCY and BCCY may shed light on a new path to explore birefringent materials for practical application.
引用
收藏
页码:12879 / 12887
页数:9
相关论文
共 32 条
[1]   Microassembly of semiconductor three-dimensional photonic crystals [J].
Aoki, K ;
Miyazaki, HT ;
Hirayama, H ;
Inoshita, K ;
Baba, T ;
Sakoda, K ;
Shinya, N ;
Aoyagi, Y .
NATURE MATERIALS, 2003, 2 (02) :117-121
[2]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[3]   MBaYB6O12 (M = Rb, Cs): two new rare-earth borates with large birefringence and short ultraviolet cutoff edges [J].
Chen, Xinglong ;
Zhang, Fangfang ;
Shi, Yunjing ;
Sun, Yanzhou ;
Yang, Zhihua ;
Pan, Shilie .
DALTON TRANSACTIONS, 2018, 47 (03) :750-757
[4]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[5]  
DeShazer L. G., 2002, P SOC PHOTO-OPT INS, V10, P4481
[6]   REFRACTIVE INDICES OF RUTILE AND SPHALERITE [J].
DEVORE, JR .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1951, 41 (06) :416-419
[7]   Crystal Structure of a Commercial Product Called Lead Cvanurate [J].
Dolabdjian, Konstantin ;
Stroebele, Markus ;
Meyer, H. -Juergen .
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2015, 641 (05) :765-768
[8]   Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals [J].
Ghosh, G .
OPTICS COMMUNICATIONS, 1999, 163 (1-3) :95-102
[9]   Enhancement of spin coherence using Q-factor engineering in semiconductor microdisc lasers [J].
Ghosh, S ;
Wang, WH ;
Mendoza, FM ;
Myers, RC ;
Li, X ;
Samarth, N ;
Gossard, AC ;
Awschalom, DD .
NATURE MATERIALS, 2006, 5 (04) :261-264
[10]   YBa3B9O18:: A promising scintillation crystal [J].
He, Ming ;
Chen, Xiaolong ;
Sun, Yuping ;
Liu, Jun ;
Zhao, Jingtai ;
Duan, Chengjun .
CRYSTAL GROWTH & DESIGN, 2007, 7 (02) :199-201