Polarized Photoluminescence Enhancement of Monolayer MoS2 Coupled with Plasmonic Salisbury-Type Absorber

被引:4
作者
Li, Wei [1 ,2 ]
Xin, Ming [1 ,2 ]
Lan, Wenze [1 ,2 ]
Bai, Qinghu [1 ,2 ]
Du, Shuo [1 ,2 ]
Wang, Gang [3 ]
Liu, Baoli [1 ,4 ,5 ]
Gu, Changzhi [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, CAS Key Lab Vacuum Phys, Sch Phys Sci, Beijing 100190, Peoples R China
[3] Beijing Inst Technol, Sch Phys, Beijing 100081, Peoples R China
[4] Univ Chinese Acad Sci, CAS Key Lab Vacuum Phys, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
[5] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
localized surface plasmons; perfect absorbers; photoluminescence; polarization; transition metal dichalcogenides; VALLEY POLARIZATION; EMISSION; WS2; COHERENCE; EXCITONS; BANDGAP;
D O I
10.1002/lpor.202200008
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The plasmon-mediated manipulation of light-matter interaction in 2D atomically transition-metal dichalcogenides (TMDs) critically depends on the design of plasmonic nanostructures to achieve the maximum optical field in TMDs. Here, a metal-isolator-metal Salisbury-type perfect absorber is fabricated to serve as a generator of the localized surface plasmons. The significant photoluminescence (PL) enhancement up to 60-fold is observed experimentally in the monolayer MoS2 on the top of this gold plasmonic hybrid nanostructures. Furthermore, the PL linear polarization can approach approximate to 60% around the peak of exciton emission and is independent on the polarization of the excitation laser. This Salisbury-type plasmon-exciton hybrid system paves a new way to develop optoelectronic devices based on TMDs.
引用
收藏
页数:6
相关论文
共 54 条
[1]  
Akselrod GM, 2014, NAT PHOTONICS, V8, P835, DOI [10.1038/nphoton.2014.228, 10.1038/NPHOTON.2014.228]
[2]   Overcoming quantum decoherence with plasmonics [J].
Bogdanov, Simeon I. ;
Boltasseva, Alexandra ;
Shalaev, Vladimir M. .
SCIENCE, 2019, 364 (6440) :532-533
[3]   Enhanced Light Emission from Large-Area Monolayer MoS2 Using Plasmonic Nanodisc Arrays [J].
Butun, Serkan ;
Tongay, Sefaattin ;
Aydin, Koray .
NANO LETTERS, 2015, 15 (04) :2700-2704
[4]   Valley-selective circular dichroism of monolayer molybdenum disulphide [J].
Cao, Ting ;
Wang, Gang ;
Han, Wenpeng ;
Ye, Huiqi ;
Zhu, Chuanrui ;
Shi, Junren ;
Niu, Qian ;
Tan, Pingheng ;
Wang, Enge ;
Liu, Baoli ;
Feng, Ji .
NATURE COMMUNICATIONS, 2012, 3
[5]   Single-Layer MoS2 Mechanical Resonators [J].
Castellanos-Gomez, Andres ;
van Leeuwen, Ronald ;
Buscema, Michele ;
van der Zant, Herre S. J. ;
Steele, Gary A. ;
Venstra, Warner J. .
ADVANCED MATERIALS, 2013, 25 (46) :6719-6723
[6]   Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2 [J].
Chernikov, Alexey ;
Berkelbach, Timothy C. ;
Hill, Heather M. ;
Rigosi, Albert ;
Li, Yilei ;
Aslan, Ozgur Burak ;
Reichman, David R. ;
Hybertsen, Mark S. ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[7]   Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons [J].
Chervy, Thibault ;
Azzini, Stefano ;
Lorchat, Etienne ;
Wang, Shaojun ;
Gorodetski, Yuri ;
Hutchison, James A. ;
Berciaud, Stephane ;
Ebbesen, Thomas W. ;
Genet, Cyriaque .
ACS PHOTONICS, 2018, 5 (04) :1281-1287
[8]   Bandgap Engineering of Strained Monolayer and Bilayer MoS2 [J].
Conley, Hiram J. ;
Wang, Bin ;
Ziegler, Jed I. ;
Haglund, Richard F., Jr. ;
Pantelides, Sokrates T. ;
Bolotin, Kirill I. .
NANO LETTERS, 2013, 13 (08) :3626-3630
[9]   Light-Controlled Near-Field Energy Transfer in Plasmonic Metasurface Coupled MoS2Monolayer [J].
Deng, Miaoyi ;
Li, Ziwei ;
Rong, Xin ;
Luo, Yang ;
Li, Bowen ;
Zheng, Liheng ;
Wang, Xiao ;
Lin, Feng ;
Meixner, Alfred J. ;
Braun, Kai ;
Zhu, Xing ;
Fang, Zheyu .
SMALL, 2020, 16 (40)
[10]   REFLECTION PROPERTIES OF THE SALISBURY SCREEN [J].
FANTE, RL ;
MCCORMACK, MT .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1988, 36 (10) :1443-1454