The essential spectrum of a non-elliptic boundary value problem

被引:14
作者
Langer, H [1 ]
Moller, M [1 ]
机构
[1] UNIV WITWATERSRAND, DEPT MATH, Johannesburg 2050, SOUTH AFRICA
关键词
essential spectrum; magnetohydrodynamics;
D O I
10.1002/mana.19961780111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note a matrix partial differential operator is considered. It is shown that under certain conditions it defines a closed operator with nonempty resolvent set, and its essential spectrum is determined. In the symmetric case G.D. RAIKOV obtained earlier corresponding results (under slightly different assumptions) for the Friedrichs extension of the operator.
引用
收藏
页码:233 / 248
页数:16
相关论文
共 9 条
  • [1] Adams R. A., 1975, SOBOLEV SPACES
  • [2] THE ESSENTIAL SPECTRUM OF SOME MATRIX OPERATORS
    ATKINSON, FV
    LANGER, H
    MENNICKEN, R
    SHKALIKOV, AA
    [J]. MATHEMATISCHE NACHRICHTEN, 1994, 167 : 5 - 20
  • [3] Dunford N., 1963, LINEAR OPERATORS
  • [4] Gilbarg D., 1983, Grundlehren der MathematischenWissenschaften, V2nd ed., DOI 10.1007/978-3-642-61798-0
  • [5] Grisvard P, 2011, CLASS APPL MATH, V69, P1, DOI 10.1137/1.9781611972030
  • [6] Grisvard P., 1992, Singularities in Boundary Value Problems, V22
  • [7] Kato T., 1980, PERTURBATION THEORY
  • [8] Necas J., 1967, Les methodes directes en theorie des equations elliptiques
  • [9] Raikov G. D., 1990, Asymptotic Analysis, V3, P1