Near-junction heat spreaders for hot spot thermal management of high power density electronic devices

被引:23
作者
Soleimanzadeh, R. [1 ]
Khadar, R. A. [1 ]
Naamoun, M. [2 ]
van Erp, R. [1 ]
Matioli, E. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Power & Wide Band Cap Elect Res Lab, CH-1015 Lausanne, Switzerland
[2] Lake Diamond SA, Lausanne EPFL, CH-1015 Lausanne, Switzerland
基金
欧洲研究理事会;
关键词
NANOCRYSTALLINE DIAMOND; CONDUCTIVITY; FILMS; TEMPERATURE; RESISTANCE; LIMITS; HEMT;
D O I
10.1063/1.5123615
中图分类号
O59 [应用物理学];
学科分类号
摘要
Many high power (opto-) electronic devices such as transistors, diodes, and lasers suffer from significant hot spot temperature rises due to the high heat fluxes generated in their active area, which limits their performance, reliability, and lifetime. Employing high thermal conductivity materials near the heat source, known as near-junction heat spreaders, offers a low-cost and effective thermal management approach. Here, we present analytical heat spreader models and a methodology to evaluate their performance. Experimental demonstration of near-junction diamond heat spreaders on vertical GaN PiN diodes revealed significantly reduced spreading resistances, along with very low temperature gradients across the device. The findings in this work provide design guidelines and demonstrate excellent prospects, especially for the devices on low thermal conductivity substrates. The theoretical analysis of optimized diamond heat spreaders shows an 86% reduction of spreading resistance for GaN devices and 98% for Ga2O3 devices. In addition, our results show that a 3 mu m-thick layer of high-quality CVD-deposited diamond heat spreaders on GaN-on-Si devices can provide better heat spreading than GaN-on-SiC devices and perform similar to GaN-on-diamond devices, highlighting the significant potential of heat spreaders as an effective and low-cost thermal management approach. Published under license by AIP Publishing.
引用
收藏
页数:9
相关论文
共 37 条
[1]   Diamond overgrown InAlN/GaN HEMT [J].
Alomari, M. ;
Dipalo, M. ;
Rossi, S. ;
Diforte-Poisson, M. -A. ;
Delage, S. ;
Carlin, J. -F. ;
Grandjean, N. ;
Gaquiere, C. ;
Toth, L. ;
Pecz, B. ;
Kohn, E. .
DIAMOND AND RELATED MATERIALS, 2011, 20 (04) :604-608
[2]   The 2018 GaN power electronics roadmap [J].
Amano, H. ;
Baines, Y. ;
Beam, E. ;
Borga, Matteo ;
Bouchet, T. ;
Chalker, Paul R. ;
Charles, M. ;
Chen, Kevin J. ;
Chowdhury, Nadim ;
Chu, Rongming ;
De Santi, Carlo ;
De Souza, Maria Merlyne ;
Decoutere, Stefaan ;
Di Cioccio, L. ;
Eckardt, Bernd ;
Egawa, Takashi ;
Fay, P. ;
Freedsman, Joseph J. ;
Guido, L. ;
Haeberlen, Oliver ;
Haynes, Geoff ;
Heckel, Thomas ;
Hemakumara, Dilini ;
Houston, Peter ;
Hu, Jie ;
Hua, Mengyuan ;
Huang, Qingyun ;
Huang, Alex ;
Jiang, Sheng ;
Kawai, H. ;
Kinzer, Dan ;
Kuball, Martin ;
Kumar, Ashwani ;
Lee, Kean Boon ;
Li, Xu ;
Marcon, Denis ;
Maerz, Martin ;
McCarthy, R. ;
Meneghesso, Gaudenzio ;
Meneghini, Matteo ;
Morvan, E. ;
Nakajima, A. ;
Narayanan, E. M. S. ;
Oliver, Stephen ;
Palacios, Tomas ;
Piedra, Daniel ;
Plissonnier, M. ;
Reddy, R. ;
Sun, Min ;
Thayne, Iain .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (16)
[3]   Thermal conductivity of ultrathin nano-crystalline diamond films determined by Raman thermography assisted by silicon nanowires [J].
Anaya, Julian ;
Rossi, Stefano ;
Alomari, Mohammed ;
Kohn, Erhard ;
Toth, Lajos ;
Pecz, Bela ;
Kuball, Martin .
APPLIED PHYSICS LETTERS, 2015, 106 (22)
[4]   Nanocrystalline Diamond Integration with III-Nitride HEMTs [J].
Anderson, T. J. ;
Hobart, K. D. ;
Tadjer, M. J. ;
Koehler, A. D. ;
Imhoff, E. A. ;
Hite, J. K. ;
Feygelson, T. I. ;
Pate, B. B. ;
Eddy, C. R., Jr. ;
Kub, F. J. .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2017, 6 (02) :Q3036-Q3039
[5]   Nanocrystalline Diamond for Near Junction Heat Spreading in GaN Power HEMTs [J].
Anderson, T. J. ;
Hobart, K. D. ;
Tadjer, M. J. ;
Koehler, A. D. ;
Feygelson, T. I. ;
Pate, B. B. ;
Hite, J. K. ;
Kub, F. J. ;
Eddy, C. R., Jr. .
WIDE BANDGAP SEMICONDUCTOR MATERIALS AND DEVICES 15, 2014, 61 (04) :45-49
[6]   Analytical Solution for Temperature Rise in Complex Multilayer Structures With Discrete Heat Sources [J].
Bagnall, Kevin R. ;
Muzychka, Yuri S. ;
Wang, Evelyn N. .
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2014, 4 (05) :817-830
[7]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[8]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[9]   Thermal characterization of gallium oxide Schottky barrier diodes [J].
Chatterjee, Bikramjit ;
Jayawardena, Asanka ;
Heller, Eric ;
Snyder, David W. ;
Dhar, Sarit ;
Choi, Sukwon .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (11)
[10]   Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials [J].
Dong, Huicong ;
Wen, Bin ;
Melnik, Roderick .
SCIENTIFIC REPORTS, 2014, 4 :7037