Numerical Analysis of Magnetic and Plasma Characteristics of the DC Ring Cusp Discharge Ion Thruster

被引:0
作者
Ranasinghe, Naveen Deshan [1 ]
Wijesiriwardana, R. [1 ]
机构
[1] Univ Moratuwa, Dept Elect Engn, Moratuwa, Sri Lanka
来源
2021 12TH INTERNATIONAL CONFERENCE ON MECHANICAL AND AEROSPACE ENGINEERING (ICMAE) | 2021年
关键词
ion thruster; numerical model; DC discharge; magnetic ring cusp; grid perforation; electric propulsion;
D O I
10.1109/ICMAE52228.2021.9522412
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Electric propulsion systems are developed as efficient satellite propulsion systems over the years. In the electric propulsion arena, three main thruster models can be seen in worldwide space applications. They are electrothermal, electrostatic, and electromagnetic thrusters. Direct Current (DC) ring cusp discharge ion thruster is an electrostatic class ion thruster. It is also highly anticipated that ion thruster's collective thrust in space will lead to space explorations. This study mainly focuses on the numerical analysis of the magnetic and plasma characteristics of DC ring cusp discharge ion thruster. In the numerical model, basic concepts of ion thruster were presented with magnetic and plasma characteristics, performance and heavier species characteristics, and the variation of plasma density with, node voltage, pressure, grid perforation, and the magnetic field. The magnetic characteristics of the ion thruster were modeled using two dimensional (2D) axisymmetric model with three magnetic rings. In addition, a three-dimensional (3D) revolution model is also presented to investigate the full-scale ion thruster. Also, the plasma characteristics including ion densities were analyzed using finite element numerical, 2D fluid axisymmetric model, and 3D revolution model to evaluate the ion distributions.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 14 条
[1]   Electron energy distribution function, effective electron temperature, and dust charge in the temporal afterglow of a plasma [J].
Denysenko, I. B. ;
Kersten, H. ;
Azarenkov, N. A. .
PHYSICS OF PLASMAS, 2016, 23 (05)
[2]   Numerical methods for kinetic equations [J].
Dimarco, G. ;
Pareschi, L. .
ACTA NUMERICA, 2014, 23 :369-520
[3]  
Goebel D. M., 2008, FUNDAMENTALS ELECT P, DOI DOI 10.1109/AERO.2000.878373
[4]   Ion thrusters for electric propulsion: Scientific issues developing a niche technology into a game changer [J].
Holste, K. ;
Dietz, P. ;
Scharmann, S. ;
Keil, K. ;
Henning, T. ;
Zschaetzsch, D. ;
Reitemeyer, M. ;
Nauschuett, B. ;
Kiefer, F. ;
Kunze, F. ;
Zorn, J. ;
Heiliger, C. ;
Joshi, N. ;
Probst, U. ;
Thueringer, R. ;
Volkmar, C. ;
Packan, D. ;
Peterschmitt, S. ;
Brinkmann, K. T. ;
Zaunick, H. -G. ;
Thoma, M. H. ;
Kretschmer, M. ;
Leiter, H. J. ;
Schippers, S. ;
Hannemann, K. ;
Klar, P. J. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (06)
[5]   Hybrid fluid-kinetic model for neutral particles in the plasma edge [J].
Horsten, N. ;
Samaey, G. ;
Baelmans, M. .
NUCLEAR MATERIALS AND ENERGY, 2019, 18 :201-207
[6]   Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials [J].
Levchenko, I. ;
Xu, S. ;
Teel, G. ;
Mariotti, D. ;
Walker, M. L. R. ;
Keidar, M. .
NATURE COMMUNICATIONS, 2018, 9
[7]   Electric field distribution in plasma during ion extraction by a radio frequency resonance method [J].
Matsui, T ;
Tsuda, S ;
Tsuchida, K ;
Suzuki, K ;
Shoji, T .
PHYSICS OF PLASMAS, 1997, 4 (10) :3527-3532
[8]   A novel plasma fluid model for fast 2D calculations in capacitively coupled atmospheric pressure plasma jets [J].
Mouchtouris, Sotiris ;
Kokkoris, George .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2021, 30 (01)
[9]   The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres Foreword [J].
Russell, C. T. ;
Raymond, C. A. .
SPACE SCIENCE REVIEWS, 2011, 163 (1-4) :1-2
[10]   Magnetohydrodynamic simulation study of plasma jets and plasma-surface contact in coaxial plasma accelerators [J].
Subramaniam, Vivek ;
Raja, Laxminarayan L. .
PHYSICS OF PLASMAS, 2017, 24 (06)