Mechanistic Connections between CO2 and CO Hydrogenation on Dispersed Ruthenium Nanoparticles

被引:59
作者
Mansour, Haefa [1 ]
Iglesia, Enrique [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
FISCHER-TROPSCH SYNTHESIS; COBALT PARTICLE-SIZE; INTRINSIC KINETICS; RU NANOPARTICLES; CARBON-DIOXIDE; METHANATION; CATALYSTS; SELECTIVITY; ACTIVATION; WATER;
D O I
10.1021/jacs.1c04298
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Catalytic routes for upgrading CO2 to CO and hydrocarbons have been studied for decades, and yet the mechanistic details and structure-function relationships that control catalytic performance have remained unresolved. This study elucidates the elementary steps that mediate these reactions and examines them within the context of the established mechanism for CO hydrogenation to resolve the persistent discrepancies and to demonstrate inextricable links between CO2 and CO hydrogenation on dispersed Ru nanoparticles (6-12 nm mean diameter, 573 K). The formation of CH4 from both CO2-H-2 and CO-H-2 reactants requires the cleavage of strong C=O bonds in chemisorbed CO, formed as an intermediate in both reactions, via hydrogen-assisted activation pathways. The C O bonds in CO2 are cleaved via direct interactions with exposed Ru atoms in elementary steps that are shown to be facile by fast isotopic scrambling of (CO2)-O-16-(CO2)-O-18-H-2 mixtures. Such CO2 activation steps form bound CO molecules and O atoms; the latter are removed via H-addition steps to form H2O. The kinetic hurdles in forming CH4 from CO2 do not reflect the inertness of C=O bonds in CO2 but instead reflect the intermediate formation of CO molecules, which contain stronger C O bonds than CO2 and are present at near-saturation coverages during CO2 and CO hydrogenation catalysis. The conclusions presented herein are informed by a combination of spectroscopic, isotopic, and kinetic measurements coupled with the use of analysis methods that account for strong rate inhibition by chemisorbed CO. Such methods enable the assessment of intrinsic reaction rates and are essential to accurately determine the effects of nanoparticle structure and composition on reactivity and selectivity for CO2-H-2 reactions.
引用
收藏
页码:11582 / 11594
页数:13
相关论文
共 63 条
[1]   Selective CO methanation in CO2-rich H2 atmospheres over a Ru/zeolite catalyst: The influence of catalyst calcination [J].
Abdel-Mageed, Ali M. ;
Eckle, S. ;
Anfang, H. G. ;
Behm, R. J. .
JOURNAL OF CATALYSIS, 2013, 298 :148-160
[2]   CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method [J].
Abe, Takayuki ;
Tanizawa, Masaaki ;
Watanabe, Kuniaki ;
Taguchi, Akira .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (03) :315-321
[3]   Low-Temperature Restructuring of CeO2-Supported Ru Nanoparticles Determines Selectivity in CO2 Catalytic Reduction [J].
Aitbekova, Aisulu ;
Wu, Liheng ;
Wrasman, Cody J. ;
Boubnov, Alexey ;
Hoffman, Adam S. ;
Goodman, Emmett D. ;
Bare, Simon R. ;
Cargnello, Matteo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (42) :13736-13745
[4]  
[Anonymous], 2002, HDB VIBRATIONAL SPEC
[5]  
Anslyn E.V., 2006, MODERN PHYS ORGANIC, P365
[6]   Mechanism of CO2 reduction by H2 on Ru(0001) and general selectivity descriptors for late-transition metal catalysts [J].
Avanesian, Talin ;
Gusmao, Gabriel S. ;
Christopher, Phillip .
JOURNAL OF CATALYSIS, 2016, 343 :86-96
[7]   CO2 methanation over heterogeneous catalysts: recent progress and future prospects [J].
Aziz, M. A. A. ;
Jalil, A. A. ;
Triwahyono, S. ;
Ahmad, A. .
GREEN CHEMISTRY, 2015, 17 (05) :2647-2663
[8]   Catalytic effects of ruthenium particle size on the Fischer-Tropsch Synthesis [J].
Carballo, Juan Maria Gonzalez ;
Yang, Jia ;
Holmen, Anders ;
Garcia-Rodriguez, Sergio ;
Rojas, Sergio ;
Ojeda, Manuel ;
Fierro, Jose Luis G. .
JOURNAL OF CATALYSIS, 2011, 284 (01) :102-108
[9]   Computational Approaches to the Chemical Conversion of Carbon Dioxide [J].
Cheng, Daojian ;
Negreiros, Fabio R. ;
Apra, Edoardo ;
Fortunelli, Alessandro .
CHEMSUSCHEM, 2013, 6 (06) :944-965
[10]  
Crabtree RH, 2014, ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS, 6TH EDITION, P1, DOI 10.1002/9781118788301