Secondary structure based analysis and classification of biological interfaces: identification of binding motifs in protein-protein interactions

被引:133
作者
Guharoy, Mainak [1 ]
Chakrabarti, Pinak [1 ]
机构
[1] Bose Inst, Dept Biochem, Kolkata 700054, W Bengal, India
关键词
D O I
10.1093/bioinformatics/btm274
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The increasing amount of data on protein-protein interaction needs to be rationalized for deriving guidelines for the alteration or design of an interface between two proteins. Results: We present a detailed structural analysis and comparison of homo- versus heterodimeric protein-protein interfaces. Regular secondary structures (helices and strands) are the main components of the former, whereas non-regular structures (turns, loops, etc.) frequently mediate interactions in the latter. Interface helices get longer with increasing interface area, but only in heterocomplexes. On average, the homodimers have longer helical segments and prominent helix-helix pairs. There is a surprising distinction in the relative orientation of interface helices, with a tendency for aligned packing in homodimers and a clear preference for packing at 90 degrees in heterodimers. Arg and the aromatic residues have a higher preference to occur in all secondary structural elements (SSEs) in the interface. Based or the dominant SSE, the interfaces have been grouped into four classes: alpha, beta, alpha beta and non-regular. Identity between protein and interface classes is the maximum for a proteins, but rather mediocre for the other protein classes. The interface classes of the two chains forming a heterodimer are often dissimilar. Eleven binding motifs can capture the prominent architectural features of most of the interfaces.
引用
收藏
页码:1909 / 1918
页数:10
相关论文
共 43 条
[1]   Ten thousand interactions for the molecular biologist [J].
Aloy, P ;
Russell, RB .
NATURE BIOTECHNOLOGY, 2004, 22 (10) :1317-1321
[2]   InterPreTS: protein Interaction Prediction through Tertiary Structure [J].
Aloy, P ;
Russell, RB .
BIOINFORMATICS, 2003, 19 (01) :161-162
[3]   SCOP database in 2004: refinements integrate structure and sequence family data [J].
Andreeva, A ;
Howorth, D ;
Brenner, SE ;
Hubbard, TJP ;
Chothia, C ;
Murzin, AG .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D226-D229
[4]   Statistical analysis of predominantly transient protein-protein interfaces [J].
Ansari, S ;
Helms, V .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 61 (02) :344-355
[5]   AN INVESTIGATION OF PROTEIN SUBUNIT AND DOMAIN INTERFACES [J].
ARGOS, P .
PROTEIN ENGINEERING, 1988, 2 (02) :101-113
[6]   Dissecting subunit interfaces in homodimeric proteins [J].
Bahadur, RP ;
Chakrabarti, P ;
Rodier, F ;
Janin, J .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 53 (03) :708-719
[7]   A dissection of specific and non-specific protein - Protein interfaces [J].
Bahadur, RP ;
Chakrabarti, P ;
Rodier, F ;
Janin, J .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 336 (04) :943-955
[8]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[9]   Anatomy of hot spots in protein interfaces [J].
Bogan, AA ;
Thorn, KS .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (01) :1-9
[10]   Dissecting protein-protein recognition sites [J].
Chakrabarti, P ;
Janin, J .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 47 (03) :334-343