Effects of bi-layer La0.6Sr0.4Co0.2Fe0.8O3-δ-based cathodes on characteristics of intermediate temperature solid oxide fuel cells

被引:28
|
作者
Wang, Sea-Fue [1 ]
Wang, Yuh-Ruey [1 ]
Yeh, Chun-Ting [1 ]
Hsu, Yung-Fu [1 ]
Chyou, San-Der [2 ]
Lee, Win-Tai [2 ]
机构
[1] Natl Taipei Univ Technol, Dept Mat & Mineral Resources Engn, Taipei 106, Taiwan
[2] Taiwan Power Co, Taiwan Power Res Inst, Shulin City, Taipei County, Taiwan
关键词
Solid oxide fuel cell; Bi-layer cathode; Polarization; Cell performance; COMPOSITE CATHODES; OXYGEN REDUCTION; ELECTROCHEMICAL PERFORMANCE; SUPPORTED SOFCS; ELECTRODES; PALLADIUM; LSM;
D O I
10.1016/j.jpowsour.2010.08.064
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, anode-supported planar IT-SOFCs, with a thin Sm0.2Ce0.8O2-delta (SDC) electrolyte film and a bi-layer cathode, are fabricated using tape-casting and screen-printing processes. The bi-layer cathode consists of a current collector La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) layer and a functional LSCF-SDC composite layer in various thicknesses. Microstructure studies reveal that the interfaces among various layers show good adhesion, except for Cell A equipped with a cathode of pure LSCF. Cell A reports the lowest ohmic (R-O) and polarization (R-P) resistances. R-P, which increases with the thickness of the LSCF-SDC composite layer in the cathode, rises rapidly as the temperature drops, particularly at temperatures <= 550 degrees C. This indicates the high electrical conductivity of the cathode as a major contribution to the decrease of R-P at 500 degrees C. The best cell performances are observed at 650 degrees C for all cases, in which Cell A shows a maximum power density of 1.51 W cm(-2) and an open circuit voltage of 0.80V. Considering both of the electrical and the mechanical integrity of the single cell, insertion of the composite layer is required to guarantee a good adhesion of cathode layer to electrolyte layer. However, the thickness of the composite layer should be retained as thin as possible to minimize the R-O and R-P and maximize the cell performance. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:977 / 987
页数:11
相关论文
共 50 条
  • [21] Highly chromium contaminant tolerant BaO infiltrated La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes for solid oxide fuel cells
    Chen, Kongfa
    Ai, Na
    O'Donnell, Kane M.
    Jiang, San Ping
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (07) : 4870 - 4874
  • [22] Thermodynamic and electrical properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ for intermediate-temperature solid oxide fuel cells
    Jun, Areum
    Yoo, Seonyoung
    Gwon, Oh-hun
    Shin, Jeeyoung
    Kim, Guntae
    ELECTROCHIMICA ACTA, 2013, 89 : 372 - 376
  • [23] Co-Deposition and Poisoning of Chromium and Sulfur Contaminants on La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes of Solid Oxide Fuel Cells
    Wang, Cheng Cheng
    O'Donnell, Kane
    Jian, Li
    Jiang, San Ping
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) : F507 - F512
  • [24] In situ sinterable cathode with nanocrystalline La0.6Sr0.4Co0.2Fe0.8O3-δ for solid oxide fuel cells
    Park, Young Min
    Kim, Ju Hee
    Kim, Haekyoung
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (09) : 5617 - 5623
  • [25] In-situ strategy to suppress chromium poisoning on La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of solid oxide fuel cells
    Zhao, Xinyu
    Yan, Yufei
    Li, Mingze
    Ding, Xifeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (57) : 30401 - 30408
  • [26] La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells
    Hartley, A
    Sahibzada, M
    Weston, M
    Metcalfe, IS
    Mantzavinos, D
    CATALYSIS TODAY, 2000, 55 (1-2) : 197 - 204
  • [27] Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3-δ into Gd-Doped Ceria
    Shah, M.
    Barnett, S. A.
    SOLID STATE IONICS, 2008, 179 (35-36) : 2059 - 2064
  • [28] Structure and thermal properties of La0.6Sr0.4Co0.2Fe0.8O3-δ-SDC carbonate composite cathodes for intermediate- to low-temperature solid oxide fuel cells
    Abd Rahman, Hamimah
    Muchtar, Andanastuti
    Muhamad, Norhamidi
    Abdullah, Huda
    CERAMICS INTERNATIONAL, 2012, 38 (02) : 1571 - 1576
  • [29] La0.6Sr0.4Co0.2Fe0.8O3-δ Current Collectors via Ag Infiltration for Microtubular Solid Oxide Fuel Cells with Intermediate Temperature Operation
    Mori, Masashi
    Liu, Yu
    Itoh, Takanori
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (10) : B1182 - B1187
  • [30] Performance stability and degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes under solid oxide fuel cells operation conditions
    Liu, Yihui
    Chen, Kongfa
    Zhao, Ling
    Chi, Bo
    Pu, Jian
    Jiang, San Ping
    Jian, Li
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (28) : 15868 - 15876