Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdelyi-Kober integral conditions

被引:5
作者
Baleanu, Dumitru [1 ,2 ,3 ]
Hemalatha, S. [4 ]
Duraisamy, P. [5 ]
Pandiyan, P. [6 ]
Muthaiah, Subramanian [7 ]
机构
[1] Cankaya Univ, Dept Math, Ankara, Turkey
[2] Inst Space Sci, Magurele, Romania
[3] China Med Univ, Dept Med Res, Taichung, Taiwan
[4] Sasurie Coll Arts & Sci, Dept Math, Vijayamangalam, India
[5] Gobi Arts & Sci Coll, Dept Math, Gobichettipalayam, India
[6] KPR Inst Engn & Technol, Dept Elect & Elect Engn, Coimbatore, Tamil Nadu, India
[7] KPR Inst Engn & Technol, Dept Math, Coimbatore, Tamil Nadu, India
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 12期
关键词
Caputo derivatives; Erdelyi-Kober integrals; Riemann-Liouville integrals; coupled system; existence; fixed point; SYSTEM; STABILITY;
D O I
10.3934/math.2021752
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes the existence and uniqueness of a solution for a coupled system that has fractional differential equations through Erdelyi-Kober and Riemann-Liouville fractional integral boundary conditions. The existence of the solution for the coupled system by adopting the Leray-Schauder alternative. The uniqueness of solution for the problem can be found using Banach fixed point theorem. In order to verify the proposed criterion, some numerical examples are also discussed.
引用
收藏
页码:13004 / 13023
页数:20
相关论文
共 34 条
[1]   Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions [J].
Ahmad, Bashir ;
Alsaedi, Ahmed ;
Alghamdi, Badra S. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (04) :1727-1740
[2]   On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. ;
Alsaedi, Ahmed .
CHAOS SOLITONS & FRACTALS, 2016, 83 :234-241
[3]   Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer-Hadamard type [J].
Ahmad, Manzoor ;
Zada, Akbar ;
Alzabut, Jehad .
DEMONSTRATIO MATHEMATICA, 2019, 52 (01) :283-295
[4]   A coupled system of generalized Sturm-Liouville problems and Langevin fractional differential equations in the framework of nonlocal and nonsingular derivatives [J].
Baleanu, D. ;
Alzabut, J. ;
Jonnalagadda, J. M. ;
Adjabi, Y. ;
Matar, M. M. .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[5]   Boundary value problem defined by system of generalized Sturm-Liouville and Langevin Hadamard fractional differential equations [J].
Berhail, Amel ;
Tabouche, Nora ;
Matar, Mohammed M. ;
Alzabut, Jehad .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (13) :10786-10798
[6]  
Boutiara A., 2021, Adv. Differ. Equ., V2021, P1
[7]  
Brown R.F., 2004, Bulletin of the American Mathematical Society, V41, P267
[8]   ANALYSIS OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH NONLOCAL ERDELYI-KOBER TYPE INTEGRAL BOUNDARY CONDITIONS [J].
Duraisamy, Palanisamy ;
Gopal, Thangaraj Nandha ;
Subramanian, Muthaiah .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (05) :1401-1415
[9]   Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor [J].
Ge, Zheng-Ming ;
Jhuang, Wei-Ren .
CHAOS SOLITONS & FRACTALS, 2007, 33 (01) :270-289
[10]  
Hilfer R., 2000, APPL FRACTIONAL CALC