EXPLICIT EXACT SOLUTIONS TO THE (2+1) DIMENSIONAL SINH-POISSON EQUATION

被引:0
作者
Xie, Yuanxi [1 ]
Peng, Shiyu [1 ]
机构
[1] Hunan Inst Sci & Technol, Dept Phys & Elect Informat, Yueyang 414000, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2010年 / 24卷 / 17期
基金
中国国家自然科学基金;
关键词
Auxiliary ordinary differential equation; (2+1) dimensional sinh-Poisson equation; explicit exact solution; PARTIAL-DIFFERENTIAL-EQUATIONS; NONLINEAR-WAVE EQUATIONS; JACOBI ELLIPTIC FUNCTION; DE-VRIES EQUATION; COMPLEXITON SOLUTIONS; EXPANSION METHOD;
D O I
10.1142/S021797921005569X
中图分类号
O59 [应用物理学];
学科分类号
摘要
By introducing an auxiliary ordinary differential equation and solving it by the method of variable separation, many explicit exact solutions of the (2+1) dimensional sinh-Poisson equation are presented in a simple manner.
引用
收藏
页码:3395 / 3409
页数:15
相关论文
共 25 条
[1]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[2]  
FAN EG, 1998, ACTA PHYS SINICA, V47, P353
[3]   Travelling wave solutions of some classes of nonlinear evolution equations in (1+1) and (2+1) dimensions [J].
Khater, AH ;
Malfliet, W ;
Callebaut, DK ;
Kamel, ES .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 140 (1-2) :469-477
[4]   EXACT-SOLUTIONS OF THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION [J].
KUDRYASHOV, NA .
PHYSICS LETTERS A, 1990, 147 (5-6) :287-291
[5]   Expansion method about the Jacobi elliptic function and its applications to nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
ACTA PHYSICA SINICA, 2001, 50 (11) :2068-2073
[6]  
MA W, 1994, J FUDAN U NATURAL SC, V33, P319
[7]   Partial differential equations possessing Frobenius integrable decompositions [J].
Ma, Wen-Xiu ;
Wu, Hongyou ;
He, Jingsong .
PHYSICS LETTERS A, 2007, 364 (01) :29-32
[8]   Complexiton solutions of the Toda lattice equation [J].
Ma, WX ;
Maruno, K .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 343 :219-237
[9]   Complexiton solutions to the Korteweg-de Vries equation [J].
Ma, WX .
PHYSICS LETTERS A, 2002, 301 (1-2) :35-44
[10]   Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions [J].
Ma, WX ;
You, YC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (05) :1753-1778