CAUCHY PROBLEM FOR THE KUZNETSOV EQUATION

被引:16
作者
Dekkers, Adrien [1 ]
Rozanova-Pierrat, Anna [1 ]
机构
[1] Univ Paris Saclay, Lab Math & Informat Complexite & Syst, Cent Supelec, Campus Gif Sur Yvette,3 Rue Joliot Curie, F-91190 Gif Sur Yvette, France
关键词
Non-linear acoustic; Kuznetsov equation; regular solutions; a priori estimates; WELL-POSEDNESS; DECAY;
D O I
10.3934/dcds.2019012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for a model of non-linear acoustic, named the Kuznetsov equation, describing a sound propagation in thermoviscous elastic media. For the viscous case, it is a weakly quasi-linear strongly damped wave equation, for which we prove the global existence in time of regular solutions for sufficiently small initial data, the size of which is specified, and give the corresponding energy estimates. In the inviscid case, we update the known results of John for quasi-linear wave equations, obtaining the well-posedness results for less regular initial data. We obtain, using a priori estimates and a Klainerman inequality, the estimations of the maximal existence time, depending on the space dimension, which are optimal, thanks to the blow-up results of Alinhac. Alinhac's blow-up results are also confirmed by a L-2-stability estimate, obtained between a regular and a less regular solutions.
引用
收藏
页码:277 / 307
页数:31
相关论文
共 24 条
[1]  
Adams R. A., 1975, PURE APPL MATH, V65
[2]  
Alinhac S., 2002, Equations aux Derivees Partielles
[3]  
Amann Herbert, 1995, Monographs in Mathematics, V89, DOI DOI 10.1007/978-3-0348-9221-6
[4]  
[Anonymous], 2011, DISCRETE CONT S SEP
[5]  
Brezis H., 1983, Analyse Fonctionnelle Theorie et Applications
[6]   Lp-maximal regularity for second order Cauchy problems [J].
Chill, R ;
Srivastava, S .
MATHEMATISCHE ZEITSCHRIFT, 2005, 251 (04) :751-781
[7]   LOCAL AND GLOBAL SMOOTHING EFFECTS FOR SOME LINEAR HYPERBOLIC EQUATIONS WITH A STRONG DISSIPATION [J].
Ghisi, Marina ;
Gobbino, Massimo ;
Haraux, Alain .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (03) :2039-2079
[8]  
Hamilton M.F., 1998, NONLINEAR ACOUSTICS
[9]  
HUGHES TJR, 1977, ARCH RATION MECH AN, V63, P273, DOI 10.1007/BF00251584
[10]   Wave equations with strong damping in Hilbert spaces [J].
Ikehata, Ryo ;
Todorova, Grozdena ;
Yordanov, Borislav .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (08) :3352-3368