Ultra-low thermal conductivity of AgBiS2 via Sb substitution as a scattering center for thermoelectric applications

被引:7
|
作者
Manimozhi, T. [1 ]
Kavirajan, S. [2 ]
Bharathi, K. Kamala [1 ,2 ]
Kumar, E. Senthil [1 ,2 ]
Navaneethan, M. [1 ,2 ]
机构
[1] SRM Inst Sci & Technol, Nanotechnol Res Ctr NRC, Kattankulathur 603203, Tamil Nadu, India
[2] SRM Inst Sci & Technol, Dept Phys & Nanotechnol, Funct Mat & Energy Devices Lab, Kattankulathur 603203, Tamil Nadu, India
关键词
HIGH-PERFORMANCE; BISMUTH; NANOSTRUCTURES; FIGURE; ANODE; OXIDE; ION;
D O I
10.1007/s10854-022-08211-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
AgBiS2 is a promising thermoelectric material, because of its environmentally compatible composition. In this study, a process of the solvothermal method followed by spark plasma sintering was applied to the preparation of AgBiS2 and AgBi1-xSbxS2 (x = 0.5-1) materials. The prepared samples were characterized by various techniques. The results revealed the significant and beneficial role of antimony-substituted sample (AgBi0.5Sb0.5S2). The multiphase of AgSbS2 (73.70%), Ag3SbS3 (22.59%), and Bi2S3 (3.71%) were found by Rietveld refinement technique. The optical properties showed the narrow direct bandgap of similar to 0.83 eV which can be helpful to transport the charge carriers easily. AgBiS2 and AgBi1-xSbxS2 (x = 0.5-1) have grain boundaries due to the presence of multiphase in the samples. The numerous interfaces and grain boundaries were known as a disordered arrangement of atoms, which remarkably enhanced the phonon scattering. It leads to low thermal conductivity of 0.21 Wm(-1) K-1 at 333 K in AgBi0.5Sb0.5S2 sample; it has the phases such as cubic-AgSbS2 (73.70%), rhombohedral-Ag3SbS3 (22.59%), and orthorhombic-Bi2S3 (3.71%). The plausible reason for low thermal conductivity was predicted as the occurrence of phonon scattering mechanism at grain boundaries of the multiphases.
引用
收藏
页码:12615 / 12628
页数:14
相关论文
共 26 条
  • [11] Ultra-low thermal conductivity in TiO2:C superlattices
    Niemela, Janne-Petteri
    Giri, Ashutosh
    Hopkins, Patrick E.
    Karppinen, Maarit
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (21) : 11527 - 11532
  • [12] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity*
    Wu, Y. Y.
    Zhu, X. L.
    Yang, H. Y.
    Wang, Z. G.
    Li, Y. H.
    Wang, B. T.
    CHINESE PHYSICS B, 2020, 29 (08)
  • [13] Bi2X (X = Ge, Sn) monolayers: Promising thermoelectric materials with ultra-low thermal conductivity
    Lv, Minghao
    Wu, Nan
    Fan, Xiaofeng
    Zheng, Weitao
    Singh, David J.
    MATERIALS TODAY PHYSICS, 2024, 49
  • [14] Ultra-low thermal conductivity and thermoelectric properties of polymer-mixed Bi2Te3 nanofibers by electrospinning
    Akram, Rizwan
    Khan, Jan Sher
    Qamar, Zahid
    Rafique, Saima
    Hussain, Mozaffar
    Kayani, Farrukh Bashir
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (05) : 3309 - 3321
  • [15] High transmittance and ultra-low thermal conductivity ZrO2 aerogel via zirconium hydroxyacetate precursor
    Zhu, Ze
    Wang, Xiaoqing
    Zhang, Xiaoqian
    Ma, Dehua
    Guo, Zhenfeng
    Zhang, Guanghui
    Zhu, Luyi
    Liu, Benxue
    Wang, Xinqiang
    CERAMICS INTERNATIONAL, 2024, 50 (03) : 4423 - 4432
  • [16] Ultra-low thermal conductivity and high thermoelectric performance of monolayer BiP3: a first principles study
    Wu, Yi-Yuan
    Wei, Qianglin
    Zou, Jijun
    Yang, Hengyu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (35) : 19834 - 19840
  • [17] Degenerated Hole Doping and Ultra-Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution
    He, Xinyi
    Zhang, Haoyun
    Nose, Takumi
    Katase, Takayoshi
    Tadano, Terumasa
    Ide, Keisuke
    Ueda, Shigenori
    Hiramatsu, Hidenori
    Hosono, Hideo
    Kamiya, Toshio
    ADVANCED SCIENCE, 2022, 9 (13)
  • [18] Surface and Constriction Engineering of Nanoparticle Based Structures Towards Ultra-Low Thermal Conductivity as Prospective Thermoelectric Materials
    Henadeera, Pasan
    Samaraweera, Nalaka
    Ranasinghe, Chathura
    Wijewardane, Anusha
    NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2023, 27 (01) : 25 - 41
  • [19] Exceptional thermoelectric performance of a "star-like'' SnSe nanotube with ultra-low thermal conductivity and a high power factor
    Lin, Chensheng
    Cheng, Wendan
    Guo, Zhengxiao
    Chai, Guoliang
    Zhang, Hao
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (34) : 23247 - 23253
  • [20] Ultra-Low Lattice Thermal Conductivity Enables High Thermoelectric Properties in Cu and Y Codoped SnTe via Multi-Scale Composite Nanostructures
    Lei, Kang
    Huang, Haiming
    Liu, Xu Jia
    Wang, Weiliang
    Guo, Kai
    Zheng, Ren Kui
    Li, Han
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (19) : 7541 - 7551