Asymptotic Properties of Quasi-Maximum Likelihood Estimates in Generalized Linear Models

被引:2
作者
Zhang, Sanguo [1 ]
Liao, Yuan [1 ]
Ning, Wei [2 ]
机构
[1] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
[2] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
基金
中国国家自然科学基金;
关键词
Asymptotic normality; Confidence intervals; Convergence rate; Generalized linear models; Quasi-maximum likelihood estimates; Strong consistency; LONGITUDINAL DATA-ANALYSIS; STRONG CONSISTENCY; REGRESSION MODELS; CONFIDENCE BANDS; WEAK;
D O I
10.1080/03610926.2010.513792
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider the quasi-likelihood equation Sigma(n)(i=1) X-i(y(i) - mu(X-i'beta)) = 0 for generalized linear models (GLMs). Under some mild conditions, including the convergent system {e(i) = y(i) - mu(X-i'beta(0)), i >= 1} which is defined by Lai et al. (1979), we obtain the asymptotic existence of the solution (beta) over cap (n) to the above equation and show that (beta) over cap (n) - beta(0) = O((lambda) over bar (1/2)(n) (log (lambda) over bar (n))(delta/2)/(lambda) under bar (n)) a.s., where beta(0) is the true value of parameter beta and (lambda) under bar (n)((lambda) over bar (n)) denotes the smallest (largest) eigenvalue of Sigma(n)(i=1) XiXt' satisfying ((lambda) over bar (1/2)(n) (log (lambda) over bar (n))(delta/2))/(lambda) under bar (n) -> 0 as n -> infinity for given delta > 1. We also present the asymptotic normality of (beta) over cap (n) for univariate GLMs, based on which "studentized" large sample confidence intervals for beta(0) are constructed. Simulation results and related remarks are given.
引用
收藏
页码:4417 / 4430
页数:14
相关论文
共 23 条
[1]  
[Anonymous], 1970, ITERATIVE SOLUTION N
[2]  
Bunke H., 1980, HDB STAT, V1, P593
[3]   Strong consistency of maximum quasi-likelihood estimate in generalized linear models via a last time [J].
Chang, YCI .
STATISTICS & PROBABILITY LETTERS, 1999, 45 (03) :237-246
[4]  
Chen KN, 1999, ANN STAT, V27, P1155
[5]   Adaptive quasi-likelihood estimate in generalized linear models [J].
Chen, X ;
Chen, XR .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (06) :829-846
[6]  
Chen X., 2011, QUASILIKELIHOOD METH
[7]  
Chiou JM, 1999, ANN STAT, V27, P36
[8]   ASYMPTOTIC CONFIDENCE BANDS FOR GENERALIZED NONLINEAR-REGRESSION MODELS [J].
COX, C ;
MA, GQ .
BIOMETRICS, 1995, 51 (01) :142-150
[9]   WEAK AND STRONG CONSISTENCY OF LEAST-SQUARES ESTIMATORS IN REGRESSION MODELS [J].
DRYGAS, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 34 (02) :119-127
[10]   CONSISTENCY AND ASYMPTOTIC NORMALITY OF THE MAXIMUM-LIKELIHOOD ESTIMATOR IN GENERALIZED LINEAR-MODELS [J].
FAHRMEIR, L ;
KAUFMANN, H .
ANNALS OF STATISTICS, 1985, 13 (01) :342-368