Geodesic flows and Neumann systems on Stiefel varieties: geometry and integrability

被引:10
作者
Fedorov, Yuri N. [1 ]
Jovanovic, Bozidar [2 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat 1, E-08028 Barcelona, Spain
[2] Serbian Acad Arts & Sci, Math Inst SANU, Belgrad 11000, Serbia
关键词
ISOSPECTRAL HAMILTONIAN FLOWS; HOMOGENEOUS SPACES; INFINITE DIMENSIONS; RIGID-BODY; EQUATIONS; ALGEBRAS; CONSTRUCTION; FINITE;
D O I
10.1007/s00209-010-0818-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study integrable geodesic flows on Stiefel varieties V (n,r) = SO(n)/SO(n-r) given by the Euclidean, normal (standard), Manakov-type, and Einstein metrics. We also consider natural generalizations of the Neumann systems on V (n,r) with the above metrics and proves their integrability in the non-commutative sense by presenting compatible Poisson brackets on (T (*) V (n,r) )/SO(r). Various reductions of the latter systems are described, in particular, the generalized Neumann system on an oriented Grassmannian G (n,r) and on a sphere S (n-1) in presence of Yang-Mills fields or a magnetic monopole field. Apart from the known Lax pair for generalized Neumann systems, an alternative (dual) Lax pair is presented, which enables one to formulate a generalization of the Chasles theorem relating the trajectories of the systems and common linear spaces tangent to confocal quadrics. Additionally, several extensions are considered: the generalized Neumann system on the complex Stiefel variety W (n,r) = U(n)/U(n-r), the matrix analogs of the double and coupled Neumann systems.
引用
收藏
页码:659 / 698
页数:40
相关论文
共 51 条
[1]   ISOSPECTRAL HAMILTONIAN FLOWS IN FINITE AND INFINITE DIMENSIONS .1. GENERALIZED MOSER SYSTEMS AND MOMENT MAPS INTO LOOP ALGEBRAS [J].
ADAMS, MR ;
HARNAD, J ;
PREVIATO, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 117 (03) :451-500
[2]   ISOSPECTRAL HAMILTONIAN FLOWS IN FINITE AND INFINITE DIMENSIONS .2. INTEGRATION OF FLOWS [J].
ADAMS, MR ;
HARNAD, J ;
HURTUBISE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 134 (03) :555-585
[3]  
[Anonymous], PROGR MATH
[4]  
ARNOLD VI, 1985, ENCY MATH SCI, V3
[5]   Invariant Einstein Metrics on Some Homogeneous Spaces of Classical Lie Groups [J].
Arvanitoyeorgos, Andreas ;
Dzhepko, V. V. ;
Nikonorov, Yu. G. .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2009, 61 (06) :1201-1213
[6]  
BESSE A. L., 1987, SERIES MODERN SURVEY
[7]   The symmetric representation of the rigid body equations and their discretization [J].
Bloch, AM ;
Crouch, PE ;
Marsden, JE ;
Ratiu, TS .
NONLINEARITY, 2002, 15 (04) :1309-1341
[8]   A variational problem on Stiefel manifolds [J].
Bloch, Anthony M. ;
Crouch, Peter E. ;
Sanyal, Amit K. .
NONLINEARITY, 2006, 19 (10) :2247-2276
[9]   NEW INTEGRABLE PROBLEM OF CLASSICAL MECHANICS [J].
BOGOYAVLENSKY, OI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (02) :255-269
[10]  
Bolsinov AV, 2008, COMMENT MATH HELV, V83, P679