Anosov AdS representations are quasi-Fuchsian

被引:18
作者
Barbot, Thierry [1 ]
Merigot, Quentin [2 ]
机构
[1] Ecole Normale Super Lyon, CNRS UMR 5669, F-69364 Lyon 07, France
[2] Univ Grenoble 1, Lab Jean Kuntzmann, F-38041 Grenoble 09, France
关键词
Globally hyperbolic AdS spacetimes; Anosov representations; CAUSAL PROPERTIES; SURFACE GROUPS; SPACETIMES; CURVATURE;
D O I
10.4171/GGD/163
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma be a cocompact lattice in SO(1, n). A representation rho: Gamma -> SO(2, n) is called quasi-Fuchsian if it is faithful, discrete, and preserves an acausal subset in the boundary of anti-de Sitter space. A special case are Fuchsian representations, i.e., compositions of the inclusions Gamma -> SO(1, n) and SO(1, n) subset of SO(2, n). We prove that quasi-Fuchsian representations are precisely those representations which are Anosov in the sense of Labourie (cf. [Lab06]). The study involves the geometry of locally anti-de Sitter spaces: quasi-Fuchsian representations are holonomy representations of globally hyperbolic spacetimes diffeomorphic to R x Gamma\H-n locally modeled on AdS(n+1).
引用
收藏
页码:441 / 483
页数:43
相关论文
共 32 条
  • [1] The cosmological time function
    Andersson, L
    Galloway, GJ
    Howard, R
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (02) : 309 - 322
  • [2] Notes on a paper of Mess
    Andersson, Lars
    Barbot, Thierry
    Benedetti, Riccardo
    Bonsante, Francesco
    Goldman, William M.
    Labourie, Francois
    Scannell, Kevin P.
    Schlenker, Jean-Marc
    [J]. GEOMETRIAE DEDICATA, 2007, 126 (01) : 47 - 70
  • [3] [Anonymous], 1983, SEMIRIEMANNIAN GEOME
  • [4] [Anonymous], 1987, MATH SCI RES I PUBL, V8, P75
  • [5] [Anonymous], 1995, Lectures on spaces of nonpositive curvature
  • [6] BLACK-HOLE IN 3-DIMENSIONAL SPACETIME
    BANADOS, M
    TEITELBOIM, C
    ZANELLI, J
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (13) : 1849 - 1851
  • [7] Barbot T, 2008, ADV THEOR MATH PHYS, V12, P1209
  • [8] Barbot T, 2008, ADV THEOR MATH PHYS, V12, P1
  • [9] Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on AdS3
    Barbot, Thierry
    Beguin, Francois
    Zeghib, Abdelghani
    [J]. GEOMETRIAE DEDICATA, 2007, 126 (01) : 71 - 129
  • [10] PRESCRIBING GAUSS CURVATURE OF SURFACES IN 3-DIMENSIONAL SPACETIMES APPLICATION TO THE MINKOWSKI PROBLEM IN THE MINKOWSKI SPACE
    Barbot, Thierry
    Beguin, Francois
    Zeghib, Abdelghani
    [J]. ANNALES DE L INSTITUT FOURIER, 2011, 61 (02) : 511 - 591