Ultrafast Photovoltaic-Type Deep Ultraviolet Photodetectors Using Hybrid Zero-/Two-Dimensional Heterojunctions

被引:62
作者
Kan, Hao [1 ,2 ]
Zheng, Wei [3 ]
Lin, Richeng [3 ]
Li, Min [1 ,2 ]
Fu, Chen [1 ]
Sun, Huibin [1 ]
Dong, Mei [3 ]
Xu, Cunhua [3 ]
Luo, Jingting [1 ]
Fu, YongQing [4 ]
Huang, Feng [3 ]
机构
[1] Shenzhen Univ, Coll Phys & Energy, Shenzhen Key Lab Adv Thin Films & Applicat, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
[3] Sun Yat Sen Univ, Sch Mat, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
[4] Northumbria Univ, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
deep ultraviolet; ZnS quantum dots; graphene; photovoltaic detector; ultrafast; ROOM-TEMPERATURE FERROMAGNETISM; QUANTUM DOTS;
D O I
10.1021/acsami.8b20357
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Deep ultraviolet (DUV) photodetectors have wide-range applications in satellite communications, air purification, and missile-plume detection. However, the critical barriers for the currently available wide-band gap semiconductor film-based DUV photodetectors are their low efficiency, complicated processes, and lattice mismatch with the substrate. Quantum dot (QD) devices prepared using solution-based methods can solve these problems. However, so far, there are no reports on photovoltaic-type DUV photodetectors using QDs. In this study, we propose a novel methodology to construct a hybrid zero-/two-dimensional DUV photodetector (p-type graphene/ZnS QDs/4H-SiC) with photovoltaic characteristics. The device exhibits excellent selectivity for the DUV light and has an ultrafast response speed (rise time: 28,us and decay time: 0.75 ms), which are much better than those reported for conventional photoconductive photodetectors.
引用
收藏
页码:8412 / 8418
页数:7
相关论文
共 41 条
[1]  
[Anonymous], 2018, PHOTONICS RES
[2]   Layer-by-layer growth of ε-Ga2O3 thin film by metal-organic chemical vapor deposition [J].
Chen, Zimin ;
Li, Zeqi ;
Zhuo, Yi ;
Chen, Weiqu ;
Ma, Xuejin ;
Pei, Yanli ;
Wang, Gang .
APPLIED PHYSICS EXPRESS, 2018, 11 (10)
[3]  
Clifford JP, 2009, NAT NANOTECHNOL, V4, P40, DOI [10.1038/nnano.2008.313, 10.1038/NNANO.2008.313]
[4]   High-Quality Manganese-Doped Zinc Sulfide Quantum Rods with Tunable Dual-Color and Multiphoton Emissions [J].
Deng, Zhengtao ;
Tong, Ling ;
Flores, Marco ;
Lin, Su ;
Cheng, Ji-Xin ;
Yan, Hao ;
Liu, Yan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (14) :5389-5396
[5]  
Dong M., 2018, ADV OPT MAT, V7
[6]   Phenomenal Ultraviolet Photoresponsivity and Detectivity of Graphene Dots Immobilized on Zinc Oxide Nanorods [J].
Ghosh, Dibyendu ;
Kapri, Sutanu ;
Bhattacharyya, Sayan .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (51) :35496-35504
[7]   All-Printable ZnO Quantum Dots/Graphene van der Waals Heterostructures for Ultrasensitive Detection of Ultraviolet Light [J].
Gong, Maogang ;
Liu, Qingfeng ;
Cook, Brent ;
Kattel, Bhupal ;
Wang, Ti ;
Chan, Wai-Lun ;
Ewing, Dan ;
Casper, Matthew ;
Stramel, Alex ;
Wu, Judy Z. .
ACS NANO, 2017, 11 (04) :4114-4123
[8]  
Guo FW, 2012, NAT NANOTECHNOL, V7, P798, DOI [10.1038/NNANO.2012.187, 10.1038/nnano.2012.187]
[9]   Oxygen-Assisted Charge Transfer Between ZnO Quantum Dots and Graphene [J].
Guo, Wenhao ;
Xu, Shuigang ;
Wu, Zefei ;
Wang, Ning ;
Loy, M. M. T. ;
Du, Shengwang .
SMALL, 2013, 9 (18) :3031-3036
[10]   Synergetic Effect of Silver Nanocrystals Applied in PbS Colloidal Quantum Dots for High-Performance Infrared Photodetectors [J].
He, Jungang ;
Qiao, Keke ;
Gao, Liang ;
Song, Haisheng ;
Hu, Long ;
Jiang, Shenglin ;
Zhong, Jie ;
Tang, Jiang .
ACS PHOTONICS, 2014, 1 (10) :936-943