Quantitative perfusion mapping with induced transient hypoxia using BOLD MRI

被引:20
|
作者
Vu, Chau [1 ]
Chai, Yaqiong [1 ,2 ]
Coloigner, Julie [2 ,3 ]
Nederveen, Aart J. [4 ]
Borzage, Matthew [5 ,6 ]
Bush, Adam [7 ,8 ]
Wood, John C. [1 ,9 ]
机构
[1] Univ Southern Calif, Dept Biomed Engn, Los Angeles, CA 90007 USA
[2] Childrens Hosp Los Angeles, Dept Radiol, CIBORG Lab, Los Angeles, CA 90027 USA
[3] Univ Rennes, INSERM, INRIA, CNRS,IRISA UMR 6074,Empen ERL U 1228, Rennes, France
[4] Univ Amsterdam, Amsterdam UMC, Radiol & Nucl Med, Amsterdam, Netherlands
[5] Childrens Hosp Los Angeles, Fetal & Neonatal Inst, Div Neonatol, Los Angeles, CA 90027 USA
[6] Univ Southern Calif, Keck Sch Med, Dept Pediat, Los Angeles, CA 90007 USA
[7] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[8] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[9] Childrens Hosp Los Angeles, Dept Pediat & Radiol, Div Cardiol, Los Angeles, CA 90027 USA
基金
美国国家卫生研究院;
关键词
arterial spin labeling; deoxyhemoglobin contrast; dynamic susceptibility contrast; phase contrast; transient hypoxia; CEREBRAL-BLOOD-FLOW; DYNAMIC SUSCEPTIBILITY CONTRAST; NEPHROGENIC SYSTEMIC FIBROSIS; ARTERIAL INPUT FUNCTION; VOLUME; BRAIN; QUANTIFICATION; GADOLINIUM; PRINCIPLES; PARAMETERS;
D O I
10.1002/mrm.28422
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Gadolinium-based dynamic susceptibility contrast (DSC) is commonly used to characterize blood flow in patients with stroke and brain tumors. Unfortunately, gadolinium contrast administration has been associated with adverse reactions and long-term accumulation in tissues. In this work, we propose an alternative deoxygenation-based DSC (dDSC) method that uses a transient hypoxia gas paradigm to deliver a bolus of paramagnetic deoxygenated hemoglobin to the cerebral vasculature for perfusion imaging. Methods Through traditional DSC tracer kinetic modeling, the MR signal change induced by this hypoxic bolus can be used to generate regional perfusion maps of cerebral blood flow, cerebral blood volume, and mean transit time. This gas paradigm and blood-oxygen-level-dependent (BOLD)-MRI were performed concurrently on a cohort of 66 healthy and chronically anemic subjects (age 23.5 +/- 9.7, female 64%). Results Our results showed reasonable global and regional agreement between dDSC and other flow techniques, such as phase contrast and arterial spin labeling. Conclusion In this proof-of-concept study, we demonstrated the feasibility of using transient hypoxia to generate a contrast bolus that mimics the effect of gadolinium and yields reasonable perfusion estimates. Looking forward, optimization of the hypoxia boluses and measurement of the arterial-input function is necessary to improve the accuracy of dDSC. Additionally, a cross-validation study of dDSC and DSC in brain tumor and ischemic stroke subjects is warranted to evaluate the clinical diagnostic utility of this approach.
引用
收藏
页码:182 / 195
页数:14
相关论文
共 50 条
  • [1] Whole-brain perfusion mapping in mice by dynamic BOLD MRI with transient hypoxia
    Lee, DongKyu
    Thuy Thi Le
    Im, Geun Ho
    Kim, Seong-Gi
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2022, 42 (12): : 2270 - 2286
  • [2] Mapping cerebral perfusion in mice under various anesthesia levels using highly sensitive BOLD MRI with transient hypoxia
    Le, Thuy Thi
    Im, Geun Ho
    Lee, Chan Hee
    Choi, Sang Han
    Kim, Seong-Gi
    SCIENCE ADVANCES, 2024, 10 (09)
  • [3] Mapping of the cerebral vascular response to hypoxia and hypercapnia using quantitative perfusion MRI at 3T
    Noeth, Ulrike
    Kotajima, Futoshi
    Deichmann, Ralf
    Turner, Robert
    Corfield, Douglas R.
    NMR IN BIOMEDICINE, 2008, 21 (05) : 464 - 472
  • [4] Mapping hypercapnia-induced cerebrovascular reactivity using BOLD MRI
    van der Zande, FHR
    Hofman, PAM
    Backes, WH
    NEURORADIOLOGY, 2005, 47 (02) : 114 - 120
  • [5] Mapping hypercapnia-induced cerebrovascular reactivity using BOLD MRI
    F. H. R. van der Zande
    P. A. M. Hofman
    W. H. Backes
    Neuroradiology, 2005, 47 : 114 - 120
  • [6] Mapping hepatic blood oxygenation by quantitative BOLD (qBOLD) MRI
    Wengler, Kenneth
    Wang, Jinhong
    Sosa, Mario Serrano
    Gumus, Serter
    He, Andrea
    Hussain, Shahid
    Huang, Chuan
    Bae, Kyong Tae
    He, Xiang
    MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (05) : 3272 - 3282
  • [7] Quantitative aspects of brain perfusion dynamic induced by bold fMRI
    Andrade, Katia C.
    Pontes-Neto, Octavio M.
    Leite, Joao P.
    Santos, Antonio Carlos
    Baffa, Oswaldo
    de Araujo, Draulio B.
    ARQUIVOS DE NEURO-PSIQUIATRIA, 2006, 64 (04) : 895 - 898
  • [8] Evaluation of hypoxia within human prostate carcinoma using quantified bold MRI and pimonidazole immunohistochemical mapping
    Carnell, D
    Smith, R
    Taylor, J
    Stirling, J
    Hoskin, P
    Padhani, A
    BRITISH JOURNAL OF CANCER, 2003, 88 : S12 - S12
  • [9] BOLD MRI mapping of transient hyperemia in skeletal muscle after single contractions
    Meyer, RA
    Towse, TF
    Reid, RW
    Jayaraman, RC
    Wiseman, RW
    McCully, KK
    NMR IN BIOMEDICINE, 2004, 17 (06) : 392 - 398
  • [10] Quantitative lung perfusion mapping at 0.2 T using FAIR True-FISP MRI
    Martirosian, P
    Boss, A
    Fenchel, M
    Deimling, M
    Schafer, J
    Claussen, CD
    Schick, F
    MAGNETIC RESONANCE IN MEDICINE, 2006, 55 (05) : 1065 - 1074