An ergodic theorem for the extremal process of branching Brownian motion

被引:3
|
作者
Arguin, Louis-Pierre [1 ]
Bovier, Anton [2 ]
Kistler, Nicola [3 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3T 1JA, Canada
[2] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[3] CUNY Coll Staten Isl, Dept Math, Staten Isl, NY 10314 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Branching Brownian motion; Ergodicity; Extreme value theory; KPP equation and traveling waves; STATISTICS;
D O I
10.1214/14-AIHP608
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In a previous paper, the authors proved a conjecture of Lalley and Sellke that the empirical (time-averaged) distribution function of the maximum of branching Brownian motion converges almost surely to a Gumbel distribution. The result is extended here to the entire system of particles that are extremal, i.e. close to the maximum. Namely, it is proved that the distribution of extremal particles under time-average converges to a Poisson cluster process.
引用
收藏
页码:557 / 569
页数:13
相关论文
共 50 条
  • [1] An ergodic theorem for the frontier of branching Brownian motion
    Arguin, Louis-Pierre
    Bovier, Anton
    Kistler, Nicola
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 25
  • [2] The extremal process of branching Brownian motion
    Louis-Pierre Arguin
    Anton Bovier
    Nicola Kistler
    Probability Theory and Related Fields, 2013, 157 : 535 - 574
  • [3] The extremal process of branching Brownian motion
    Arguin, Louis-Pierre
    Bovier, Anton
    Kistler, Nicola
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (3-4) : 535 - 574
  • [4] THE EXTREMAL POINT PROCESS OF BRANCHING BROWNIAN MOTION IN Rd
    Berestycki, Julien
    Kim, Yujin h.
    Lubetzky, Eyal
    Mallein, Bastien
    Zeitouni, Ofer
    ANNALS OF PROBABILITY, 2024, 52 (03): : 955 - 982
  • [5] POISSONIAN STATISTICS IN THE EXTREMAL PROCESS OF BRANCHING BROWNIAN MOTION
    Arguin, Louis-Pierre
    Bovier, Anton
    Kistler, Nicola
    ANNALS OF APPLIED PROBABILITY, 2012, 22 (04): : 1693 - 1711
  • [6] EXTENDED CONVERGENCE OF THE EXTREMAL PROCESS OF BRANCHING BROWNIAN MOTION
    Bovier, Anton
    Hartung, Lisa
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (03): : 1756 - 1777
  • [7] The extremal process of two-speed branching Brownian motion
    Bovier, Anton
    Hartung, Lisa
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 28
  • [8] Genealogy of Extremal Particles of Branching Brownian Motion
    Arguin, L. -P.
    Bovier, A.
    Kistler, N.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (12) : 1647 - 1676
  • [9] FOLIATIONS, THE ERGODIC THEOREM AND BROWNIAN-MOTION
    GARNETT, L
    JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 51 (03) : 285 - 311
  • [10] ERGODIC PROPERTY OF BROWNIAN MOTION PROCESS
    KALLIANPUR, GB
    ROBBINS, H
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (04) : 366 - 366