Effect of sacrificial agents on the dispersion of metal cocatalysts for photocatalytic hydrogen evolution

被引:39
作者
Cao, Shaowen [1 ]
Shen, Baojia [1 ]
Huang, Qian [1 ]
Chen, Zhe [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, 122 Luoshi Rd, Wuhan 430070, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Cocatalyst; Noble metal; Sacrificial agent; Hydrogen generation; GRAPHITIC CARBON NITRIDE; H-2; PRODUCTION; (G-C3N4)-BASED PHOTOCATALYSTS; DRIVEN PHOTOCATALYST; MODIFIED G-C3N4; EFFICIENT; WATER; GENERATION; ADSORPTION; NANOSHEETS;
D O I
10.1016/j.apsusc.2018.02.105
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface photodeposition of noble metal cocatalyst has been regarded as an effective approach to facilitate the separation of charge carriers and reduce the over-potential of water reduction, thus to enhance the photocatalytic H-2-production activities of semiconductor photocatalyst. Herein, the influences of sacrificial agents used in the photodeposition process on the dispersion of noble metal nanoparticles are investigated, via a series of technique of photocatalytic hydrogen evolution test, microstructure analysis and photoelectrochemical measurement. As a result, the sacrificial agents are found to show large impact on the loading amount, particle size and distribution of different metals on the surface of g-C3N4. The real loading amount of Pt and Au is higher in methanol solution than that in triethanolamine solution. Better distribution and smaller size of Pt nanoparticles are achieved in the presence of methanol; while better distribution and smaller size of Au nanoparticles are achieved in the presence of triethanolamine. As a result, quite different charge transfer ability is achieved for the synthesized Pt and Au decorated g-C3N4, which subsequently leads to disparate photocatalytic activities of the same g-C3N4 photocatalyst under various conditions. The finding in this work indicates that the valid deposition content, particle size and distribution of metal cocatalysts should be carefully taken into account when comparing the photocatalytic activities among various samples. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:361 / 367
页数:7
相关论文
共 73 条
[1]   The Electrochemistry of Nanostructured Titanium Dioxide Electrodes [J].
Berger, Thomas ;
Monllor-Satoca, Damian ;
Jankulovska, Milena ;
Lana-Villarreal, Teresa ;
Gomez, Roberto .
CHEMPHYSCHEM, 2012, 13 (12) :2824-2875
[2]   Noble-metal-free g-C3N4/Ni(dmgH)2 composite for efficient photocatalytic hydrogen evolution under visible light irradiation [J].
Cao, Shao-Wen ;
Yuan, Yu-Peng ;
Barber, James ;
Loo, Say Chye Joachim ;
Xue, Can .
APPLIED SURFACE SCIENCE, 2014, 319 :344-349
[3]   Facet effect of Pd cocatalyst on photocatalytic CO2 reduction over g-C3N4 [J].
Cao, Shaowen ;
Li, Yao ;
Zhu, Bicheng ;
Jaroniec, Mietek ;
Yu, Jiaguo .
JOURNAL OF CATALYSIS, 2017, 349 :208-217
[4]   Trace-level phosphorus and sodium co-doping of g-C3N4 for enhanced photocatalytic H2 production [J].
Cao, Shaowen ;
Huang, Qian ;
Zhu, Bicheng ;
Yu, Jiaguo .
JOURNAL OF POWER SOURCES, 2017, 351 :151-159
[5]   Shape-dependent photocatalytic hydrogen evolution activity over a Pt nanoparticle coupled g-C3N4 photocatalyst [J].
Cao, Shaowen ;
Jiang, Jing ;
Zhu, Bicheng ;
Yu, Jiaguo .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (28) :19457-19463
[6]   Polymeric Photocatalysts Based on Graphitic Carbon Nitride [J].
Cao, Shaowen ;
Low, Jingxiang ;
Yu, Jiaguo ;
Jaroniec, Mietek .
ADVANCED MATERIALS, 2015, 27 (13) :2150-2176
[7]   Transition Metal Disulfides as Noble-Metal-Alternative Co-Catalysts for Solar Hydrogen Production [J].
Chang, Kun ;
Hai, Xiao ;
Ye, Jinhua .
ADVANCED ENERGY MATERIALS, 2016, 6 (10)
[8]   Selective adsorption of thiocyanate anions on Ag-modified g-C3N4 for enhanced photocatalytic hydrogen evolution [J].
Chen, Feng ;
Yang, Hui ;
Luo, Wei ;
Wang, Ping ;
Yu, Huogen .
CHINESE JOURNAL OF CATALYSIS, 2017, 38 (12) :1990-1998
[9]   One-step synthesis and visible-light-driven H2 production from water splitting of Ag quantum dots/g-C3N4 photocatalysts [J].
Chen, Tianjun ;
Quan, Wei ;
Yu, Longbao ;
Hong, Yuanzhi ;
Song, Chengjie ;
Fan, Mingshan ;
Xiao, Lisong ;
Gu, Wei ;
Shi, Weidong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 686 :628-634
[10]   Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity [J].
Dong, Fan ;
Wang, Zhenyu ;
Sun, Yanjuan ;
Ho, Wing-Kei ;
Zhang, Haidong .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2013, 401 :70-79