Measurement of electrostatic tip-sample interactions by time-domain Kelvin probe force microscopy

被引:3
|
作者
Ritz, Christian [1 ]
Wagner, Tino [1 ,2 ]
Stemmer, Andreas [1 ]
机构
[1] Swiss Fed Inst Technol, Nanotechnol Grp, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[2] Zurich Instruments AG, Technoparkstr 1, CH-8005 Zurich, Switzerland
来源
BEILSTEIN JOURNAL OF NANOTECHNOLOGY | 2020年 / 11卷
关键词
atomic force microscopy (AFM); electrostatic height error; extended Kalman filter; Kelvin probe force microscopy (KFM); time domain; CHARGE; SURFACES; GRAPHENE; STATE;
D O I
10.3762/bjnano.11.76
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Kelvin probe force microscopy is a scanning probe technique used to quantify the local electrostatic potential of a surface. In common implementations, the bias voltage between the tip and the sample is modulated. The resulting electrostatic force or force gradient is detected via lock-in techniques and canceled by adjusting the dc component of the tip-sample bias. This allows for an electrostatic characterization and simultaneously minimizes the electrostatic influence onto the topography measurement. However, a static contribution due to the bias modulation itself remains uncompensated, which can induce topographic height errors. Here, we demonstrate an alternative approach to find the surface potential without lock-in detection. Our method operates directly on the frequency-shift signal measured in frequency-modulated atomic force microscopy and continuously estimates the electrostatic influence due to the applied voltage modulation. This results in a continuous measurement of the local surface potential, the capacitance gradient, and the frequency shift induced by surface topography. In contrast to conventional techniques, the detection of the topography-induced frequency shift enables the compensation of all electrostatic influences, including the component arising from the bias modulation. This constitutes an important improvement over conventional techniques and paves the way for more reliable and accurate measurements of electrostatics and topography.
引用
收藏
页码:911 / 921
页数:11
相关论文
共 12 条
  • [1] Measurement of electrostatic tip-sample interactions by time-domain Kelvin probe force microscopy
    Ritz C.
    Wagner T.
    Stemmer A.
    Ritz, Christian (critz@ethz.ch), 1600, Beilstein-Institut Zur Forderung der Chemischen Wissenschaften (11): : 911 - 921
  • [2] Electrostatic tip-dielectric sample interaction in electrostatic force microscopy
    Gomez, Ariel
    Graciela Avila, Alba
    Ibrahim Massy, Gergory
    REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2009, (50): : 31 - 40
  • [3] Kelvin probe force microscopy and electrostatic force microscopy responses to the polarization in a ferroelectric thin film: Theoretical and experimental investigations
    Cuniot-Ponsard, M.
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (01)
  • [4] Atomic force microscopy tip-sample interaction analysis using nanocontact mechanic models
    Daeinabi, K.
    Korayem, M. H.
    MICRO & NANO LETTERS, 2011, 6 (09) : 794 - 798
  • [5] Artifacts in time-resolved Kelvin probe force microscopy
    Sadewasser, Sascha
    Nicoara, Nicoleta
    Solares, Santiago D.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2018, 9 : 1272 - 1281
  • [6] Surface Potential Measurement of Bacteria Using Kelvin Probe Force Microscopy
    Birkenhauer, Eric
    Neethirajan, Suresh
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2014, (93): : e52327
  • [7] Near-equilibrium measurement of quantum size effects using Kelvin probe force microscopy
    Spaeth, Thomas
    Popp, Matthias
    Leon, Carmen Perez
    Marz, Michael
    Hoffmann-Vogel, Regina
    NANOSCALE, 2017, 9 (23) : 7868 - 7874
  • [8] Real-space measurement of potential distribution in PECVD ONO electrets by Kelvin probe force microscopy
    Emmerich, F.
    Thielemann, C.
    NANOTECHNOLOGY, 2016, 27 (20)
  • [9] Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform
    Collins, Liam
    Ahmadi, Mahshid
    Wu, Ting
    Hu, Bin
    Kalinin, Sergei V.
    Jesse, Stephen
    ACS NANO, 2017, 11 (09) : 8717 - 8729
  • [10] Time-domain Radiated Emissions Measurement of Laboratory Simulated Spacecraft On-Orbit Electrostatic Discharge
    Sun, Adrian G.
    Crofton, Mark W.
    Young, Jason A.
    Cox, William A.
    Beiting, Edward J.
    2014 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC EUROPE), 2014, : 775 - 780