q-Taylor and interpolation series for Jackson q-difference operators

被引:50
作者
Annaby, M. H. [1 ]
Mansour, Z. S. [1 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
关键词
q-Taylor series; Jackson q-difference operator;
D O I
10.1016/j.jmaa.2008.02.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove q-Taylor series for Jackson q-difference operators. Absolute and uniform convergence to the original function are proved for analytic functions. We derive interpolation results for entire functions of q-exponential growth which is less than ln q(-1), 0 < q < 1, from its values at the nodes {aq(-n), n epsilon N}, a is a non-zero complex number with absolute and uniform convergence criteria. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:472 / 483
页数:12
相关论文
共 17 条
[1]   Q-ANALOGUES OF CAUCHYS FORMULAS [J].
ALSALAM, WA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 17 (03) :616-&
[2]  
ALSALAM WA, 1975, PAC J MATH, V60, P1
[3]  
[Anonymous], 1950, MATH NACHR
[4]  
[Anonymous], 1908, EARTH ENV SCI T R SO, DOI DOI 10.1515/JAA.2008.183
[5]  
[Anonymous], CONT MATH
[6]  
BEZIVIN JP, 1992, COLLECT MATH, V43, P125
[7]   Interpolation of entire functions, product formula for basic sine function [J].
Bouzeffour, Fethi .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2006, 13 (02) :293-301
[8]  
Hayman WK, 2005, CONTEMP MATH, V382, P205
[9]   Applications of q-Taylor theorems [J].
Ismail, MEH ;
Stanton, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 153 (1-2) :259-272
[10]  
Ismail MEH, 2003, J APPROX THEORY, V123, P125, DOI [10.1016/S0021-9045(03)00076-5, 10.1016/S0021-9045-00076-5]