Modular invariants for genus 3 hyperelliptic curves

被引:3
作者
Ionica, Sorina [1 ]
Kilicer, Pinar [2 ]
Lauter, Kristin [3 ]
Garcia, Elisa Lorenzo [4 ]
Manzateanu, Adelina [5 ]
Massierer, Maike [6 ]
Vincent, Christelle [7 ]
机构
[1] Univ Picardie Jules Verne, Lab MIS, 33 Rue St Leu, F-80039 Amiens, France
[2] Univ Groningen, Johann Bernoulli Inst Wiskunde & Informat, Nijenborgh 9, NL-9747 AG Groningen, Netherlands
[3] Microsoft Res, One Redmond Way, Redmond, WA 98052 USA
[4] Univ Rennes 1, Lab IRMAR, Campus Beaulieu, F-35042 Rennes, France
[5] Univ Bristol, Sch Math, Inst Sci & Technol Austria, Bristol BS8 1JR, Avon, England
[6] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[7] Univ Vermont, Dept Math & Stat, 16 Colchester Ave, Burlington, VT 05401 USA
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
Hyperelliptic curve; Invariant of curve; Bad reduction; Siegel modular form; Complex multiplication; Theta constant; FORMS; JACOBIANS;
D O I
10.1007/s40993-018-0146-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we prove an analogue of a theorem of Lachaud, Ritzenthaler, and Zykin, which allows us to connect invariants of binary octics to Siegel modular forms of genus 3. We use this connection to show that certain modular functions, when restricted to the hyperelliptic locus, assume values whose denominators are products of powers of primes of bad reduction for the associated hyperelliptic curves. We illustrate our theorem with explicit computations. This work is motivated by the study of the values of these modular functions at CM points of the Siegel upper half-space, which, if their denominators are known, can be used to effectively compute models of (hyperelliptic, in our case) curves with CM.
引用
收藏
页数:22
相关论文
共 31 条
[1]  
Balakrishnan J. S., 2018, PREPRINT
[2]   Constructing genus-3 hyperelliptic Jacobians with CM [J].
Balakrishnan, Jennifer S. ;
Ionica, Sorina ;
Lauter, Kristin ;
Vincent, Christelle .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2016, 19 :283-300
[3]  
Basson R., 2015, THESIS
[4]   COMPUTING L-FUNCTIONS AND SEMISTABLE REDUCTION OF SUPERELLIPTIC CURVES [J].
Bouw, Irene I. ;
Wewers, Stefan .
GLASGOW MATHEMATICAL JOURNAL, 2017, 59 (01) :77-108
[5]  
Fay J., 1973, THETA FUNCTIONS RIEM
[6]  
Galbraith S.D., 1996, THESIS
[7]   Class invariants for quartic CM fields [J].
Goren, Eyal Z. ;
Lauter, Kristin E. .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (02) :457-480
[8]   ON TEICHMULLER MODULAR-FORMS [J].
ICHIKAWA, T .
MATHEMATISCHE ANNALEN, 1994, 299 (04) :731-740
[9]   Theta constants and Teichmuller modular forms [J].
Ichikawa, T .
JOURNAL OF NUMBER THEORY, 1996, 61 (02) :409-419
[10]   TEICHMULLER MODULAR-FORMS OF DEGREE-3 [J].
ICHIKAWA, T .
AMERICAN JOURNAL OF MATHEMATICS, 1995, 117 (04) :1057-1061