Quantum contextuality of a qutrit state

被引:6
作者
Xu, Zhen-Peng [1 ]
Su, Hong-Yi [1 ]
Chen, Jing-Ling [1 ,2 ]
机构
[1] Nankai Univ, Chern Inst Math, Div Theoret Phys, Tianjin 300071, Peoples R China
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 01期
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
KOCHEN-SPECKER THEOREM; HIDDEN VARIABLES; MECHANICS; VECTORS;
D O I
10.1103/PhysRevA.92.012104
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a study of quantum contextuality of three-dimensional mixed states for the Klyachko-Can-Binicioglu-Shumovsky (KCBS) and the Kurzynski-Kaszlikowski (KK) noncontextuality inequalities. For any class of states whose eigenvalues are arranged in decreasing order, a universal set of measurements always exists for the KK inequality, whereas none exists for the KCBS inequality. This difference can be reflected from the spectral distribution of the overall measurement matrix. Our results would facilitate the error analysis for experimental setups, and our spectral method in the paper combined with graph theory could be useful in future studies on quantum contextuality.
引用
收藏
页数:5
相关论文
共 17 条
  • [1] Abramsky S., 2012, ELECT P THEORET COMP, V95, P1
  • [2] ON PROBLEM OF HIDDEN VARIABLES IN QUANTUM MECHANICS
    BELL, JS
    [J]. REVIEWS OF MODERN PHYSICS, 1966, 38 (03) : 447 - &
  • [3] Bell-Kochen-Specker theorem: A proof with 18 vectors
    Cabello, A
    Estebaranz, JM
    GarciaAlcaine, G
    [J]. PHYSICS LETTERS A, 1996, 212 (04) : 183 - 187
  • [4] Graph-Theoretic Approach to Quantum Correlations
    Cabello, Adan
    Severini, Simone
    Winter, Andreas
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (04)
  • [5] Contextuality supplies the 'magic' for quantum computation
    Howard, Mark
    Wallman, Joel
    Veitch, Victor
    Emerson, Joseph
    [J]. NATURE, 2014, 510 (7505) : 351 - 355
  • [6] BELL-KOCHEN-SPECKER THEOREM FOR 20 VECTORS
    KERNAGHAN, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (21): : L829 - L830
  • [7] KOCHEN-SPECKER THEOREM FOR 8-DIMENSIONAL SPACE
    KERNAGHAN, M
    PERES, A
    [J]. PHYSICS LETTERS A, 1995, 198 (01) : 1 - 5
  • [8] Optimal Inequalities for State-Independent Contextuality
    Kleinmann, Matthias
    Budroni, Costantino
    Larsson, Jan-Ake
    Guehne, Otfried
    Cabello, Adan
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (25)
  • [9] Simple test for hidden variables in spin-1 systems
    Klyachko, Alexander A.
    Can, M. Ali
    Binicioglu, Sinem
    Shumovsky, Alexander S.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (02)
  • [10] KOCHEN S, 1967, J MATH MECH, V17, P59