EasyPQC: Verifying Post-Quantum Cryptography

被引:15
作者
Barbosa, Manuel [1 ,2 ]
Barthe, Gilles [3 ,4 ]
Fan, Xiong [5 ]
Gregoire, Benjamin [6 ]
Hung, Shih-Han [7 ]
Katz, Jonathan [8 ]
Strub, Pierre-Yves [9 ]
Wu, Xiaodi [8 ]
Zhou, Li [3 ]
机构
[1] Univ Porto FCUP, Porto, Portugal
[2] INESC TEC, Porto, Portugal
[3] MPI SP, Bochum, Germany
[4] IMDEA Software Inst, Bochum, Germany
[5] Algorand Inc, Boston, MA USA
[6] INRIA, Sophia Antipolis, France
[7] Univ Texas Austin, Austin, TX 78712 USA
[8] Univ Maryland, College Pk, MD 20742 USA
[9] Ecole Polytech, Paris, France
来源
CCS '21: PROCEEDINGS OF THE 2021 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY | 2021年
关键词
Formal verification; post-quantum cryptography; EXACT SECURITY;
D O I
10.1145/3460120.3484567
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
EasyCrypt is a formal verification tool used extensively for formalizing concrete security proofs of cryptographic constructions. However, the EasyCrypt formal logics consider only classical attackers, which means that post-quantum security proofs cannot be formalized and machine-checked with this tool. In this paper we prove that a natural extension of the EasyCrypt core logics permits capturing a wide class of post-quantum cryptography proofs, settling a question raised by (Unruh, POPL 2019). Leveraging our positive result, we implement EasyPQC, an extension of EasyCrypt for post-quantum security proofs, and use EasyPQC to verify post-quantum security of three classic constructions: PRF-based MAC, Full Domain Hash and GPV08 identity-based encryption.
引用
收藏
页码:2564 / 2586
页数:23
相关论文
共 55 条
[1]   Quantum Security Proofs Using Semi-classical Oracles [J].
Ambainis, Andris ;
Hamburg, Mike ;
Unruh, Dominique .
ADVANCES IN CRYPTOLOGY - CRYPTO 2019, PT II, 2019, 11693 :269-295
[2]  
Baelde David, 2021, IEEE S P 2021 42 IEE
[3]  
Barbosa Manuel, 2019, 20191393 CRYPT EPRIN
[4]  
Barbosa Manuel, 2021, IACR CRYPTOL EPRINT, V2021, P156
[5]   Easycrypt: A tutorial [J].
Barthe, Gilles ;
Dupressoir, François ;
Grégoire, Benjamin ;
Kunz, César ;
Schmidt, Benedikt ;
Strub, Pierre-Yves .
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8604 :146-166
[6]   Relational Proofs for Quantum Programs [J].
Barthe, Gilles ;
Hsu, Justin ;
Ying, Mingsheng ;
Yu, Nengkun ;
Zhou, Li .
PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2020, 4 (POPL)
[7]   Symbolic Proofs for Lattice-Based Cryptography [J].
Barthe, Gilles ;
Fan, Xiong ;
Gancher, Joshua ;
Gregoire, Benjamin ;
Jacomme, Charlie ;
Shi, Elaine .
PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), 2018, :538-555
[8]   Relational Reasoning via Probabilistic Coupling [J].
Barthe, Gilles ;
Espitau, Thomas ;
Gregoire, Benjamin ;
Hsu, Justin ;
Stefanesco, Leo ;
Strub, Pierre-Yves .
LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, (LPAR-20 2015), 2015, 9450 :387-401
[9]  
Barthe G, 2011, LECT NOTES COMPUT SC, V6841, P71, DOI 10.1007/978-3-642-22792-9_5
[10]   Formal Certification of Code-Based Cryptographic Proofs [J].
Barthe, Gilles ;
Gregoire, Benjamin ;
Beguelin, Santiago Zanella .
ACM SIGPLAN NOTICES, 2009, 44 (01) :90-101