Thermodynamic analysis of using chemical-looping combustion in Allam-Z cycle instead of common combustion

被引:24
|
作者
Liu, Zhiyuan [1 ,2 ]
Li, Zhiyong [1 ]
Zhang, Yuan [4 ]
Zhang, Yidian [3 ]
Zhao, Ben [3 ]
机构
[1] Dongguan Univ Technol, Sch Chem Engn & Energy Technol, Dongguan 523808, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R China
[3] Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China
[4] Shanghai Maritime Univ, Coll Merchant & Marine, Shanghai 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemical-looping combustion; Supercritical CO2; Allam cycle; Thermodynamic performance; OXYGEN CARRIER; POWER-PLANT; HIGH-EFFICIENCY; GENERATION; GAS; EMISSION; FUELS;
D O I
10.1016/j.enconman.2022.115229
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper proposes a modified Allam-Z cycle that uses chemical-looping combustion (CLC) instead of traditional combustion, called CLC-Allam cycle. Under the same cycle and components conditions, the electric efficiency of the CLC-Allam cycle is about 9.5 percentage points higher than the original Allam-Z cycle. The investigation of selecting oxygen carriers in the CLC-Allam cycle reveals that cupric oxide always provides the highest fuel conversion in the supercritical carbon dioxide (SCO2) atmosphere and is thus believed to be the best oxygen carrier among the five investigated metallic oxides. The subsequent analysis focuses on parametric sensitivity and shows that (1) the inlet temperature and isentropic efficiency of CO2 pump have little effect on cycle efficiency, beneficial to enhance the system robustness; (2) the isentropic efficiency of turbine and compressor has a more significant influence on the cycle electric efficiency than the pump; (3) an optimal SCO2 turbine inlet temperature exists for the CLC-Allam cycle and the oxygen carrier will not encounter sintering or melting problems under the optimal temperature.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Chemical-looping combustion - a thermodynamic study
    McGlashan, N. R.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2008, 222 (06) : 1005 - 1019
  • [2] Thermal analysis of chemical-looping combustion
    Jerndal, E.
    Mattisson, T.
    Lyngfelt, A.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2006, 84 (A9): : 795 - 806
  • [3] A hydrogen and oxygen combined cycle with chemical-looping combustion
    Zhang, Xiaosong
    Li, Sheng
    Hong, Hui
    Jin, Hongguang
    ENERGY CONVERSION AND MANAGEMENT, 2014, 85 : 701 - 708
  • [4] A chemical intercooling gas turbine cycle with chemical-looping combustion
    Zhang, Xiaosong
    Han, Wei
    Hong, Hui
    Jin, Hongguang
    ENERGY, 2009, 34 (12) : 2131 - 2136
  • [5] Exergy analysis of chemical-looping combustion systems
    Anheden, M
    Svedberg, G
    ENERGY CONVERSION AND MANAGEMENT, 1998, 39 (16-18) : 1967 - 1980
  • [6] Chemical-looping combustion using syngas as fuel
    Mattisson, Tobias
    Garcia-Labiano, Francisco
    Kronberger, Bernhard
    Lyngfelt, Anders
    Adanez, Juan
    Hofbauer, Hermann
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2007, 1 (02) : 158 - 169
  • [7] Chemical-Looping Combustion With Gaseous Fuels: Thermodynamic Parametric Modeling
    Hossain, Mohammad M.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (05) : 3415 - 3421
  • [8] Chemical-Looping Combustion With Gaseous Fuels: Thermodynamic Parametric Modeling
    Mohammad M. Hossain
    Arabian Journal for Science and Engineering, 2014, 39 : 3415 - 3421
  • [9] A THERMODYNAMIC ANALYSIS OF CHEMICAL LOOPING COMBUSTION
    Heyes, Andrew L.
    Botsis, Loukas
    McGlashan, Niall R.
    Childs, Peter R. N.
    PROCEEDINGS OF THE ASME TURBO EXPO 2011, VOL 4, 2012, : 105 - 111
  • [10] Solid fuels in chemical-looping combustion
    Leion, Henrik
    Mattisson, Tobias
    Lyngfelt, Anders
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2008, 2 (02) : 180 - 193