Operando Monitoring of F- Formation in Lithium Ion Batteries

被引:46
作者
Bolli, Christoph [1 ]
Gueguen, Aurelie [1 ]
Mendez, Manuel A. [2 ]
Berg, Erik J. [1 ,3 ]
机构
[1] Paul Scherrer Inst, Electrochem Lab, CH-5232 Villigen, Switzerland
[2] BASF SE, RCN BL M311, D-67056 Ludwigshafen, Germany
[3] Uppsala Univ, Dept Chem, Angstrom Lab, Box 538, SE-75121 Uppsala, Sweden
基金
瑞士国家科学基金会;
关键词
ELECTROLYTE INTERPHASE SEI; HIGH-VOLTAGE; FLUOROETHYLENE CARBONATE; TRIS(TRIMETHYLSILYL) PHOSPHITE; THERMAL-DECOMPOSITION; ETHYLENE CARBONATE; MASS-SPECTROMETRY; CATHODE MATERIALS; LI; ADDITIVES;
D O I
10.1021/acs.chemmater.8b03810
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Online electrochemical mass spectrometry (OEMS) was applied to study the influence of tris-(trimethylsilyl)phosphate (TMSPa) as an additive in 1 M LiPF6 (fluoroethylene carbonate/diethylene carbonate (DEC)) electrolyte on the gas evolution in Li-rich/NCM full cells during cycling. The results indicate that TMSPa neither influences the solid electrolyte interphase (SEI) formation on the anode nor the surface reconstruction on the cathode but acts as a chemical scavenger for HF and LiF. TMSPa thus lowers the electrolyte acidity and suppresses further LiPF6 decomposition, resulting in lower impedance and higher lithium ion battery (LIB) performance. Furthermore, the selective reactivity of TMSPa toward fluorides leads to the formation of Me3SiF enabling the additive to act as a chemical probe and to study HF/LiF formation operando by OEMS. By this methodology, we were able to identify contributions from SEI formation, proton and reactive oxygen formation >4.2 V, cross-talk between the anode and cathode, and the polyvinylidene fluoride binder to the fluoride formation in LIBs.
引用
收藏
页码:1258 / 1267
页数:10
相关论文
共 72 条
[1]   The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling [J].
An, Seong Jin ;
Li, Jianlin ;
Daniel, Claus ;
Mohanty, Debasish ;
Nagpure, Shrikant ;
Wood, David L., III .
CARBON, 2016, 105 :52-76
[2]   Surface characterization of electrodes from high power lithium-ion batteries [J].
Andersson, AM ;
Abraham, DP ;
Haasch, R ;
MacLaren, S ;
Liu, J ;
Amine, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) :A1358-A1369
[3]  
Atkins Peter., 2002, Atkins's Physical Chemistry, V7th
[4]   Reaction of water with hexafluorophosphates and with Li bis(perfluoroethylsulfonyl)imide salt [J].
Barlow, CG .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (08) :362-364
[5]  
BHAT V, 2012, Patent No. 0315536
[6]   SEI film formation on highly crystalline graphitic materials in lithium-ion batteries [J].
Buqa, H ;
Würsig, A ;
Vetter, J ;
Spahr, ME ;
Krumeich, F ;
Novák, P .
JOURNAL OF POWER SOURCES, 2006, 153 (02) :385-390
[7]   Suppression of toxic compounds produced in the decomposition of lithium-ion battery electrolytes [J].
Campion, CL ;
Li, WT ;
Euler, WB ;
Lucht, BL ;
Ravdel, B ;
DiCarlo, JF ;
Gitzendanner, R ;
Abraham, KM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (07) :A194-A197
[8]   Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries [J].
Campion, CL ;
Li, WT ;
Lucht, BL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (12) :A2327-A2334
[9]   Differential Electrochemical Mass Spectrometry Study of the Interface of xLi2MnO3•(1-x)LiMO2 (M = Ni, Co, and Mn) Material as a Positive Electrode in Li-Ion Batteries [J].
Castel, Elias ;
Berg, Erik J. ;
El Kazzi, Mario ;
Novak, Petr ;
Villevieille, Claire .
CHEMISTRY OF MATERIALS, 2014, 26 (17) :5051-5057
[10]   Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries [J].
Choi, Nam-Soon ;
Han, Jung-Gu ;
Ha, Se-Young ;
Park, Inbok ;
Back, Chang-Keun .
RSC ADVANCES, 2015, 5 (04) :2732-2748