Two-particle quantum walks: Entanglement and graph isomorphism testing

被引:123
作者
Berry, Scott D. [1 ]
Wang, Jingbo B. [1 ]
机构
[1] Univ Western Australia, Sch Phys, Nedlands, WA 6009, Australia
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 04期
关键词
INTERFERENCE;
D O I
10.1103/PhysRevA.83.042317
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study discrete-time quantum walks on the line and on general undirected graphs with two interacting or noninteracting particles. We introduce two simple interaction schemes and show that they both lead to a diverse range of probability distributions that depend on the correlations and relative phases between the initial coin states of the two particles. We investigate the characteristics of these quantum walks and the time evolution of the entanglement between the two particles from both separable and entangled initial states. We also test the capability of two-particle discrete-time quantum walks to distinguish nonisomorphic graphs. For strongly regular graphs, we show that noninteracting discrete-time quantum walks can distinguish some but not all nonisomorphic graphs with the same family parameters. By incorporating an interaction between the two particles, all nonisomorphic strongly regular graphs tested are successfully distinguished.
引用
收藏
页数:12
相关论文
共 31 条
[1]  
Aharonov D., 2001, P 33 ANN ACM S THEOR, DOI [10.1145/380752.380758, DOI 10.1145/380752.380758]
[2]  
Ambainis A., 2001, P 33 ANN ACM S THEOR, P37, DOI 10.1145/380752.380757.
[3]  
Ambainis A, 2005, PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1099
[4]   Asymptotic entanglement in 2D quantum walks [J].
Annabestani, M. ;
Abolhasani, M. R. ;
Abal, G. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (07)
[5]  
Babai L., 1983, P 15 ANN ACM S THEOR, DOI [10.1145/800061.808746, DOI 10.1145/800061.808746]
[6]   AN OPTIMAL LOWER BOUND ON THE NUMBER OF VARIABLES FOR GRAPH IDENTIFICATION [J].
CAI, JY ;
FURER, M ;
IMMERMAN, N .
COMBINATORICA, 1992, 12 (04) :389-410
[7]   Entanglement in coined quantum walks on regular graphs [J].
Carneiro, I ;
Loo, M ;
Xu, XB ;
Girerd, M ;
Kendon, V ;
Knight, PL .
NEW JOURNAL OF PHYSICS, 2005, 7
[8]  
DOUGLAS BL, ARXIV11015211V1
[9]   A classical approach to the graph isomorphism problem using quantum walks [J].
Douglas, Brendan L. ;
Wang, Jingbo B. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (07)
[10]   Graph matching using the interference of discrete-time quantum walks [J].
Emms, David ;
Wilson, Richard C. ;
Hancock, Edwin R. .
IMAGE AND VISION COMPUTING, 2009, 27 (07) :934-949