A family of arithmetic surfaces of genus 3

被引:3
作者
Guàrdia, J [1 ]
机构
[1] Univ Politecn Catalunya, Dept Matemat Aplicada 4, Escola Univ Politecn Vilanova & Geltru, E-08800 Barcelona, Catalunya, Spain
关键词
D O I
10.2140/pjm.2003.212.71
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is the study of the genus 3 curves C-n:Y-4=X-4-(4n-2)X-2+1, from the Arakelov viewpoint. The Jacobian of the curves C-n splits as a product of elliptic curves, and this fact gives enough arithmetical datum to determine the stable model and the canonical sheaf of the curves. We use this information to look for explicit expressions of the modular height and the self-intersection of the dualizing sheaf of the curves C-n.
引用
收藏
页码:71 / 91
页数:21
相关论文
共 18 条
[1]  
BATUT C, PARI
[2]  
Bosch S., 1990, ERGEBNISSE MATH, V21
[3]  
BOST JB, 1990, ASTERISQUE, P69
[4]  
CARTIER P, 1990, PROGR MATH, V88
[5]  
DELIGNE P, 1985, ASTERISQUE, P25
[6]  
Deligne P., 1969, PUBL MATH-PARIS, V36, P75
[7]  
DESCHAMPS M, 1981, ASTERISQUE, P1
[8]   CALCULUS ON ARITHMETIC SURFACES [J].
FALTINGS, G .
ANNALS OF MATHEMATICS, 1984, 119 (02) :387-424
[9]   Explicit geometry on a family of curves of genus 3 [J].
Guárdia, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 :299-310
[10]  
LANG S, 1988, INTRO ARAKELOV THEOR