Single-Cell Transcriptome Integration Analysis Reveals the Correlation Between Mesenchymal Stromal Cells and Fibroblasts

被引:21
作者
Fan, Chuiqin [1 ]
Liao, Maochuan [1 ]
Xie, Lichun [2 ]
Huang, Liangping [1 ]
Lv, Siyu [3 ]
Cai, Siyu [1 ]
Su, Xing [1 ]
Wang, Yue [3 ]
Wang, Hongwu [3 ]
Wang, Manna [3 ]
Liu, Yulin [1 ]
Wang, Yu [3 ]
Guo, Huijie [3 ]
Yang, Hanhua [2 ]
Liu, Yufeng [4 ]
Wang, Tianyou [5 ]
Ma, Lian [1 ,2 ,3 ]
机构
[1] Shantou Univ Med Coll, Affiliated Hosp 2, Dept Pediat, Shantou, Peoples R China
[2] Guangzhou Med Univ, Women & Childrens Med Ctr, Affiliated Hosp 3, Dept Pediat, Guangzhou, Guangdong, Peoples R China
[3] China Med Univ, Shenzhen Childrens Hosp, Dept Hematol & Oncol, Shenzhen, Guangdong, Peoples R China
[4] Zhengzhou Univ, Affiliated Hosp 1, Dept Pediat, Zhengzhou, Henan, Peoples R China
[5] Capital Med Univ, Beijing Childrens Hosp, Dept Hematol & Oncol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
fibroblast; mesenchymal stromal cells; integration analysis; pericytes; single-cell transcriptome sequencing; STEM-CELLS; IN-VITRO; DIFFERENTIATION; EXPRESSION; STRATEGIES; DIVERSITY; FORESKIN; DISEASE; MARKERS; TISSUE;
D O I
10.3389/fgene.2022.798331
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: Mesenchymal stromal cells (MSCs) and fibroblasts show similar morphology, surface marker expression, and proliferation, differentiation, and immunomodulatory capacities. These similarities not only blur their cell identities but also limit their application.Methods: We performed single-cell transcriptome sequencing of the human umbilical cord and foreskin MSCs (HuMSCs and FSMSCs) and extracted the single-cell transcriptome data of the bone marrow and adipose MSCs (BMSCs and ADMSCs) from the Gene Expression Omnibus (GEO) database. Then, we performed quality control, batch effect correction, integration, and clustering analysis of the integrated single-cell transcriptome data from the HuMSCs, FMSCs, BMSCs, and ADMSCs. The cell subsets were annotated based on the surface marker phenotypes for the MSCs (CD105(+), CD90(+), CD73(+), CD45(-), CD34(-), CD19(-), HLA-DRA(-), and CD11b(-)), fibroblasts (VIM+, PECAM1(-), CD34(-), CD45(-), EPCAM(-), and MYH11(-)), and pericytes (CD146(+), PDGFRB(+), PECAM1(-), CD34(-), and CD45(-)). The expression levels of common fibroblast markers (ACTA2, FAP, PDGFRA, PDGFRB, S100A4, FN1, COL1A1, POSTN, DCN, COL1A2, FBLN2, COL1A2, DES, and CDH11) were also analyzed in all cell subsets. Finally, the gene expression profiles, differentiation status, and the enrichment status of various gene sets and regulons were compared between the cell subsets.Results: We demonstrated 15 distinct cell subsets in the integrated single-cell transcriptome sequencing data. Surface marker annotation demonstrated the MSC phenotype in 12 of the 15 cell subsets. C10 and C14 subsets demonstrated both the MSC and pericyte phenotypes. All 15 cell subsets demonstrated the fibroblast phenotype. C8, C12, and C13 subsets exclusively demonstrated the fibroblast phenotype. We identified 3,275 differentially expressed genes, 305 enriched gene sets, and 34 enriched regulons between the 15 cell subsets. The cell subsets that exclusively demonstrated the fibroblast phenotype represented less primitive and more differentiated cell types.Conclusion: Cell subsets with the MSC phenotype also demonstrated the fibroblast phenotype, but cell subsets with the fibroblast phenotype did not necessarily demonstrate the MSC phenotype, suggesting that MSCs represented a subclass of fibroblasts. We also demonstrated that the MSCs and fibroblasts represented highly heterogeneous populations with distinct cell subsets, which could be identified based on the differentially enriched gene sets and regulons that specify proliferating, differentiating, metabolic, and/or immunomodulatory functions.
引用
收藏
页数:12
相关论文
共 74 条
[31]   Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds [J].
Guerrero-Juarez, Christian F. ;
Dedhia, Priya H. ;
Jin, Suoqin ;
Ruiz-Vega, Rolando ;
Ma, Dennis ;
Liu, Yuchen ;
Yamaga, Kosuke ;
Shestova, Olga ;
Gay, Denise L. ;
Yang, Zaixin ;
Kessenbrock, Kai ;
Nie, Qing ;
Pear, Warren S. ;
Cotsarelis, George ;
Plikus, Maksim V. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[32]   Single-cell transcriptional diversity is a hallmark of developmental potential [J].
Gulati, Gunsagar S. ;
Sikandar, Shaheen S. ;
Wesche, Daniel J. ;
Manjunath, Anoop ;
Bharadwaj, Anjan ;
Berger, Mark J. ;
Ilagan, Francisco ;
Kuo, Angera H. ;
Hsieh, Robert W. ;
Cai, Shang ;
Zabala, Maider ;
Scheeren, Ferenc A. ;
Lobo, Neethan A. ;
Qian, Dalong ;
Yu, Feiqiao B. ;
Dirbas, Frederick M. ;
Clarke, Michael F. ;
Newman, Aaron M. .
SCIENCE, 2020, 367 (6476) :405-+
[33]   Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells [J].
Haniffa, Muzlifah A. ;
Wang, Xiao-Nong ;
Holtick, Udo ;
Rae, Michelle ;
Isaacs, John D. ;
Dickinson, Anne M. ;
Hilkens, Catharien M. U. ;
Collin, Matthew P. .
JOURNAL OF IMMUNOLOGY, 2007, 179 (03) :1595-1604
[34]   Inflammation-induced glycolytic switch controls suppressivity of mesenchymal stem cells via STAT1 glycosylation [J].
Jitschin, R. ;
Boettcher, M. ;
Saul, D. ;
Lukassen, S. ;
Bruns, H. ;
Loschinski, R. ;
Ekici, A. B. ;
Reis, A. ;
Mackensen, A. ;
Mougiakakos, D. .
LEUKEMIA, 2019, 33 (07) :1783-1796
[35]   Challenges in unsupervised clustering of single-cell RNA-seq data [J].
Kiselev, Vladimir Yu ;
Andrews, Tallulah S. ;
Hemberg, Martin .
NATURE REVIEWS GENETICS, 2019, 20 (05) :273-282
[36]   Specific Age-Associated DNA Methylation Changes in Human Dermal Fibroblasts [J].
Koch, Carmen M. ;
Suschek, Christoph V. ;
Lin, Qiong ;
Bork, Simone ;
Goergens, Maria ;
Joussen, Sylvia ;
Pallua, Norbert ;
Ho, Anthony D. ;
Zenke, Martin ;
Wagner, Wolfgang .
PLOS ONE, 2011, 6 (02)
[37]   Fast, sensitive and accurate integration of single-cell data with Harmony [J].
Korsunsky, Ilya ;
Millard, Nghia ;
Fan, Jean ;
Slowikowski, Kamil ;
Zhang, Fan ;
Wei, Kevin ;
Baglaenko, Yuriy ;
Brenner, Michael ;
Loh, Po-ru ;
Raychaudhuri, Soumya .
NATURE METHODS, 2019, 16 (12) :1289-+
[38]   Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells [J].
Le Blanc, K ;
Rasmusson, I ;
Sundberg, B ;
Götherström, C ;
Hassan, M ;
Uzunel, M ;
Ringdén, O .
LANCET, 2004, 363 (9419) :1439-1441
[39]   Is CD34 truly a negative marker for mesenchymal stromal cells? [J].
Lin, Ching-Shwun ;
Ning, Hongxiu ;
Lin, Guiting ;
Lue, Tom F. .
CYTOTHERAPY, 2012, 14 (10) :1159-1163
[40]   Therapeutic Potential of Niche-Specific Mesenchymal Stromal Cells for Spinal Cord Injury Repair [J].
Lindsay, Susan L. ;
Barnett, Susan C. .
CELLS, 2021, 10 (04)