Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion

被引:35
作者
Hairer, M. [1 ,2 ]
Pillai, N. S. [3 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[2] NYU, Courant Inst, New York, NY USA
[3] Univ Warwick, CRiSM, Coventry CV4 7AL, W Midlands, England
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2011年 / 47卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
Ergodicity; Fractional Brownian motion; Hormander's theorem; DIFFERENTIAL-EQUATIONS DRIVEN; MALLIAVIN CALCULUS;
D O I
10.1214/10-AIHP377
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We demonstrate that stochastic differential equations (SDEs) driven by fractional Brownian motion with Hurst parameter H > 1/2 have similar ergodic properties as SDEs driven by standard Brownian motion. The focus in this article is on hypoelliptic systems satisfying Hormander's condition. We show that such systems enjoy a suitable version of the strong Feller property and we conclude that under a standard controllability condition they admit a unique stationary solution that is physical in the sense that it does not "look into the future." The main technical result required for the analysis is a bound on the moments of the inverse of the Malliavin covariance matrix, conditional on the past of the driving noise.
引用
收藏
页码:601 / 628
页数:28
相关论文
共 34 条
[1]  
Arnold L, 1998, Random dynamical systems
[2]   Operators associated with a stochastic differential equation driven by fractional Brownian motions [J].
Baudoin, Fabrice ;
Coutin, Laure .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (05) :550-574
[3]   A version of Hormander's theorem for the fractional Brownian motion [J].
Baudoin, Fabrice ;
Hairer, Martin .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 139 (3-4) :373-395
[4]   MARTINGALES, THE MALLIAVIN CALCULUS AND HYPOELLIPTICITY UNDER GENERAL HORMANDER CONDITIONS [J].
BISMUT, JM .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 56 (04) :469-505
[5]  
Bogachev Vladimir I., 1998, Mathematical Surveys and Monographs, V62, DOI 10.1090/surv/062
[6]   Stochastic analysis, rough path analysis and fractional Brownian motions [J].
Coutin, L ;
Qian, ZM .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (01) :108-140
[7]  
Da Prato G., 1996, LONDON MATH SOC LECT, V229
[8]   PERIODIC AND ALMOST-PERIODIC SOLUTIONS FOR SEMILINEAR STOCHASTIC-EQUATIONS [J].
DAPRATO, G ;
TUDOR, C .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1995, 13 (01) :13-33
[9]   FORMULAS FOR THE DERIVATIVES OF HEAT SEMIGROUPS [J].
ELWORTHY, KD ;
LI, XM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 125 (01) :252-286
[10]  
FRIZ P., 2010, Cambridge Stud. Adv. Math., V120