Fischer-Tropsch synthesis in microchannels

被引:92
作者
Almeida, L. C. [1 ]
Echave, F. J. [1 ]
Sanz, O. [1 ]
Centeno, M. A. [2 ]
Arzamendi, G. [3 ]
Gandia, L. M. [3 ]
Sousa-Aguiar, E. F. [4 ]
Odriozola, J. A. [2 ]
Montes, M. [1 ]
机构
[1] Univ Basque Country, Dept Appl Chem, ES-20018 San Sebastian, Spain
[2] Univ Seville, CSIC, Inst Mat Sci Seville, Seville, Spain
[3] Univ Publ Navarra, Dept Appl Chem, Pamplona, Spain
[4] CENPES PETROBRAS, Rio De Janeiro, Brazil
关键词
Microchannels reactor; Structured supports; Washcoating; Fischer-Tropsch (FTS); Microreactors; STRUCTURED SUPPORTS; SELECTIVITY; MONOLITHS; DESIGN; TRENDS;
D O I
10.1016/j.cej.2010.09.091
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Different metallic supports (aluminum foams of 40 ppi, honeycomb monolith and micromonolith of 350 and 1180 cpsi, respectively) have been loaded with a 20%Co-0.5%Re/gamma-Al2O3 catalyst by the washcoating method. Layers of different thicknesses have been deposited onto the metallic supports. The catalytic coatings were characterized measuring their textural properties, adhesion and morphology. These structured catalysts have been tested in the Fischer-Tropsch synthesis (FTS) and compared with a microchannel block presenting perpendicular channels for reaction and cooling. The selectivity depends on the type of support used and mainly on the thickness of the layer deposited. In general, the C5+, selectivity decreased at increasing CO conversion for all of the systems (powder, monoliths, foams and microchannels block). On the other hand, the selectivity to methane increased with the thickness of the catalytic layer due to the higher effective H-2/CO ratio over the active sites resulting from the higher diffusivity of H-2 compared with CO in the liquid products filling the pores. The C5+. selectivity of the microchannels reactor is higher than that of the structured supports and the powder catalyst. (C) 2010 Elsevier By. All rights reserved.
引用
收藏
页码:536 / 544
页数:9
相关论文
共 22 条
[1]   Washcoating of metallic monoliths and microchannel reactors [J].
Almeida, L. C. ;
Echave, F. J. ;
Sanz, O. ;
Centeno, M. A. ;
Odriozola, J. A. ;
Montes, M. .
SCIENTIFIC BASES FOR THE PREPARATION OF HETEROGENEOUS CATALYSTS: PROCEEDINGS OF THE 10TH INTERNATIONAL SYMPOSIUM, 2010, 175 :25-33
[2]   Computational fluid dynamics study of heat transfer in a microchannel reactor for low-temperature Fischer-Tropsch synthesis [J].
Arzamendi, G. ;
Dieguez, P. M. ;
Montes, M. ;
Odriozola, J. A. ;
Falabella Sousa-Aguiar, E. ;
Gandia, L. M. .
CHEMICAL ENGINEERING JOURNAL, 2010, 160 (03) :915-922
[3]  
Bartholomew CH, 2006, FUNDAMENTALS OF INDUSTRIAL CATALYTIC PROCESSES, 2ND EDITION, P1, DOI 10.1002/9780471730071
[4]   Trends in Fischer-Tropsch reactor technology - opportunities for structured reactors [J].
de Deugd, RM ;
Kapteijn, F ;
Moulijn, JA .
TOPICS IN CATALYSIS, 2003, 26 (1-4) :29-39
[5]   The Fischer-Tropsch process: 1950-2000 [J].
Dry, ME .
CATALYSIS TODAY, 2002, 71 (3-4) :227-241
[6]   Pt/Ce0.68Zr0.32O2 washcoated monoliths for automotive emission control [J].
González-Velasco, JR ;
Gutiérrez-Ortiz, MA ;
Marc, JL ;
Botas, JA ;
González-Marcos, MP ;
Blanchard, G .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2003, 42 (02) :311-317
[7]   Fischer-Tropsch synthesis on monolithic catalysts of different materials [J].
Hilmen, AM ;
Bergene, E ;
Lindvåg, OA ;
Schanke, D ;
Eri, S ;
Holmen, A .
CATALYSIS TODAY, 2001, 69 (1-4) :227-232
[8]   SELECTIVITY CONTROL AND CATALYST DESIGN IN THE FISCHER-TROPSCH SYNTHESIS - SITES, PELLETS, AND REACTORS [J].
IGLESIA, E ;
REYES, SC ;
MADON, RJ ;
SOLED, SL .
ADVANCES IN CATALYSIS, VOL 39, 1993, 39 :221-302
[9]   Fischer-Tropsch synthesis using monolithic catalysts [J].
Kapteijn, F ;
de Deugd, RM ;
Moulijn, JA .
CATALYSIS TODAY, 2005, 105 (3-4) :350-356
[10]   New non-traditional multiphase catalytic reactors based on monolithic structures [J].
Kapteijn, F ;
Nijhuis, TA ;
Heiszwolf, JJ ;
Moulijn, JA .
CATALYSIS TODAY, 2001, 66 (2-4) :133-144