Rational enzyme design for controlled functionalization of acetylated xylan for cell-free polymer biosynthesis

被引:6
作者
Wang, Hsin-Tzu [1 ,2 ]
Bharadwaj, S. Vivek [3 ]
Yang, Jeong-Yeh [1 ,2 ]
Curry, M. Thomas [1 ,2 ]
Moremen, W. Kelley [1 ,2 ]
Bomble, J. Yannick [4 ]
Urbanowicz, R. Breeanna [1 ,2 ]
机构
[1] Univ Georgia, Complex Carbohydrate Res Ctr, 315 Riverbend Rd, Athens, GA 30602 USA
[2] Univ Georgia, Dept Biochem & Mol Biol, 315 Riverbend Rd, Athens, GA 30602 USA
[3] Natl Renewable Energy Lab, Renewable Resources & Enabling Sci Ctr, 16253 Denver West Pkwy, Golden, CO 80401 USA
[4] Natl Renewable Energy Lab, Biosci Ctr, 16253 Denver West Pkwy, Golden, CO 80401 USA
基金
美国国家卫生研究院;
关键词
Xylan O-acetylation; Xylooligosaccharide; Enzyme-substrate interaction; Computational modeling; Enzyme engineering; One-pot synthesis; ANTARCTICA LIPASE; EUCALYPTUS WOOD; GROUP MIGRATION; ARABIDOPSIS; WALL; EXPRESSION; RESISTANCE; OLIGOSACCHARIDES; FRACTIONATION; FERMENTATION;
D O I
10.1016/j.carbpol.2021.118564
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Xylan O-acetyltransferase 1 (XOAT1) is involved in O-acetylating the backbone of hemicellulose xylan. Recent structural analysis of XOAT1 showed two unequal lobes forming a cleft that is predicted to accommodate and position xylan acceptors into proximity with the catalytic triad. Here, we used docking and molecular dynamics simulations to investigate the optimal orientation of xylan in the binding cleft of XOAT1 and identify putative key residues (Gln445 and Arg444 on Minor lobe & Asn312, Met311 and Asp403 on Major lobe) involved in substrate interactions. Site-directed mutagenesis coupled with biochemical analyses revealed the major lobe of XOAT1 is important for xylan binding. Mutation of single key residues yielded XOAT1 variants with various enzymatic efficiencies that are applicable to one-pot synthesis of xylan polymers with different degrees of Oacetylation. Taken together, our results demonstrate the effectiveness of computational modeling in guiding enzyme engineering aimed at modulating xylan and redesigning plant cell walls.
引用
收藏
页数:10
相关论文
共 62 条
  • [1] Aachary A.A., 2015, Bioactive Carbohydrates and Dietary Fibre, V5, P146, DOI [10.1016/j.bcdf.2015.03.004, DOI 10.1016/J.BCDF.2015.03.004]
  • [2] From lignocellulosic residues to market: Production and commercial potential of xylooligosaccharides
    Amorim, Claudia
    Silverio, Sara C.
    Prather, Kristala L. J.
    Rodrigues, Ligia R.
    [J]. BIOTECHNOLOGY ADVANCES, 2019, 37 (07)
  • [3] Xylo-oligosaccharides from lignocellulosic materials: Chemical structure, health benefits and production by chemical and enzymatic hydrolysis
    Azevedo Carvalho, Ana Flavia
    de Oliva Neto, Pedro
    Da Silva, Douglas Fernandes
    Pastore, Glaucia Maria
    [J]. FOOD RESEARCH INTERNATIONAL, 2013, 51 (01) : 75 - 85
  • [4] Microbial carbohydrate esterases deacetylating plant polysaccharides
    Biely, Peter
    [J]. BIOTECHNOLOGY ADVANCES, 2012, 30 (06) : 1575 - 1588
  • [5] ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance
    Bouchabke-Coussa, Oumaya
    Quashie, Marie-Luce
    Seoane-Redondo, Jose
    Fortabat, Marie-Noelle
    Gery, Carine
    Yu, Agnes
    Linderme, Daphne
    Trouverie, Jacques
    Granier, Fabienne
    Teoule, Evelyne
    Durand-Tardif, Mylene
    [J]. BMC PLANT BIOLOGY, 2008, 8 (1)
  • [6] In situ proton NMR study of acetyl and formyl group migration in mono-O-acyl D-glucose
    Brecker, Lothar
    Mahut, Marek
    Schwarz, Alexandra
    Nidetzky, Bernd
    [J]. MAGNETIC RESONANCE IN CHEMISTRY, 2009, 47 (04) : 328 - 332
  • [7] CHARMM: The Biomolecular Simulation Program
    Brooks, B. R.
    Brooks, C. L., III
    Mackerell, A. D., Jr.
    Nilsson, L.
    Petrella, R. J.
    Roux, B.
    Won, Y.
    Archontis, G.
    Bartels, C.
    Boresch, S.
    Caflisch, A.
    Caves, L.
    Cui, Q.
    Dinner, A. R.
    Feig, M.
    Fischer, S.
    Gao, J.
    Hodoscek, M.
    Im, W.
    Kuczera, K.
    Lazaridis, T.
    Ma, J.
    Ovchinnikov, V.
    Paci, E.
    Pastor, R. W.
    Post, C. B.
    Pu, J. Z.
    Schaefer, M.
    Tidor, B.
    Venable, R. M.
    Woodcock, H. L.
    Wu, X.
    Yang, W.
    York, D. M.
    Karplus, M.
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) : 1545 - 1614
  • [8] The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana
    Busse-Wicher, Marta
    Gomes, Thiago C. F.
    Tryfona, Theodora
    Nikolovski, Nino
    Stott, Katherine
    Grantham, Nicholas J.
    Bolam, David N.
    Skaf, Munir S.
    Dupree, Paul
    [J]. PLANT JOURNAL, 2014, 79 (03) : 492 - 506
  • [9] Redesigning plant cell walls for the biomass-based bioeconomy
    Carpita, Nicholas C.
    McCann, Maureen C.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2020, 295 (44) : 15144 - 15157
  • [10] RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific
    Diener, AC
    Ausubel, FM
    [J]. GENETICS, 2005, 171 (01) : 305 - 321