Stochasticity and positive feedback enable enzyme kinetics at the membrane to sense reaction size

被引:11
作者
Lee, Albert A. [1 ,2 ]
Huang, William Y. C. [1 ,5 ]
Hansen, Scott D. [1 ,6 ]
Kim, Neil H. [1 ]
Alvarez, Steven [1 ,3 ]
Groves, Jay T. [1 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Div Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA
[5] Stanford Univ, Dept Chem & Syst Biol, Stanford, CA 94305 USA
[6] Univ Oregon, Dept Chem & Biochem, Eugene, OR 97403 USA
关键词
enzyme kinetics; membrane; stochastic kinetics; PIP lipid; cell signaling; NUCLEOTIDE EXCHANGE FACTOR; RAS ACTIVATION; CELL-SIZE; PTEN; BISTABILITY; INFORMATION; PHOSPHATASE; DYNAMICS; NOISE; SHAPE;
D O I
10.1073/pnas.2103626118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Here, we present detailed kinetic analyses of a panel of soluble lipid kinases and phosphatases, as well as Ras activating proteins, acting on their respective membrane surface substrates. The results reveal that the mean catalytic rate of such interfacial enzymes can exhibit a strong dependence on the size of the reaction system-in this case membrane area. Experimental measurements and kinetic modeling reveal how stochastic effects stemming from low molecular copy numbers of the enzymes alter reaction kinetics based on mechanistic characteristics of the enzyme, such as positive feedback. For the competitive enzymatic cycles studied here, the final product-consisting of a specific lipid composition or Ras activity state-depends on the size of the reaction system. Furthermore, we demonstrate how these reaction size dependencies can be controlled by engineering feedback mechanisms into the enzymes.
引用
收藏
页数:11
相关论文
共 59 条
[1]  
Akkouchi Mohamed, 2008, [Journal of the Chungcheong Mathematical Society, 충청수학회지], V21, P501
[2]   Detection of molecular interactions at membrane surfaces through colloid phase transitions [J].
Baksh, MM ;
Jaros, M ;
Groves, JT .
NATURE, 2004, 427 (6970) :139-141
[3]   Stochastic activation and bistability in a Rab GTPase regulatory network [J].
Bezeljak, Urban ;
Loya, Hrushikesh ;
Kaczmarek, Beata ;
Saunders, Timothy E. ;
Loose, Martin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (12) :6540-6549
[4]   GEFs and GAPs: Critical elements in the control of small G proteins [J].
Bos, Johannes L. ;
Rehmann, Holger ;
Wittinghofer, Alfred .
CELL, 2007, 129 (05) :865-877
[5]   DIRECT, REAL-TIME MEASUREMENT OF RAPID INORGANIC-PHOSPHATE RELEASE USING A NOVEL FLUORESCENT-PROBE AND ITS APPLICATION TO ACTOMYOSIN SUBFRAGMENT-1 ATPASE [J].
BRUNE, M ;
HUNTER, JL ;
CORRIE, JET ;
WEBB, MR .
BIOCHEMISTRY, 1994, 33 (27) :8262-8271
[6]   A positive feedback loop stabilizes the guanine-nucleotide exchange factor Cdc24 at sites of polarization [J].
Butty, AC ;
Perrinjaquet, N ;
Petit, A ;
Jaquenoud, M ;
Segall, JE ;
Hofmann, K ;
Zwahlen, C ;
Peter, M .
EMBO JOURNAL, 2002, 21 (07) :1565-1576
[7]   Allosteric activation of PTEN phosphatase by phosphatidylinositol 4,5-bisphosphate [J].
Campbell, RB ;
Liu, FH ;
Ross, AH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (36) :33617-33620
[8]   LIPID SIGNALING ENZYMES AND SURFACE DILUTION KINETICS [J].
CARMAN, GM ;
DEEMS, RA ;
DENNIS, EA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (32) :18711-18714
[9]   Regulation of Transmembrane Signaling by Phase Separation [J].
Case, Lindsay B. ;
Ditlev, Jonathon A. ;
Rosen, Michael K. .
ANNUAL REVIEW OF BIOPHYSICS, VOL 48, 2019, 48 :465-494
[10]   A non-linear system patterns Rab5 GTPase on the membrane [J].
Cezanne, Alice ;
Lauer, Janelle ;
Solomatina, Anastasia ;
Sbalzarini, Ivo F. ;
Zerial, Marino .
ELIFE, 2020, 9 :1-22