Equivalence of QCD in the ε-regime and chiral random matrix theory with or without chemical potential

被引:38
作者
Basile, F. [1 ,2 ,3 ]
Akernann, G. [1 ,4 ]
机构
[1] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
[2] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[3] INFN, I-56127 Pisa, Italy
[4] CNRS Marseille Luminy, Ctr Phys Theor, F-13288 Marseille, France
关键词
matrix models; chiral Lagrangians;
D O I
10.1088/1126-6708/2007/12/043
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We prove that QCD in the epsilon-regime of chiral Perturbation Theory is equivalent to chiral Random Matrix Theory for zero and both non-zero real and imaginary chemical potential mu. To this aim we prove a theorem that relates integrals over fermionic and bosonic variables to super-Hermitian or super-Unitary groups also called superbosonisation. Our findings extend previous results for the equivalence of the partition functions, spectral densities and the quenched two-point densities. We can show that all k-point density correlation functions agree in both theories for an arbitrary number of quark flavours, for either mu = 0 or mu not equal 0 taking real or imaginary values. This implies the equivalence for all individual k-th eigenvalue distributions which are particularly useful to determine low energy constants from Lattice QCD with chiral fermions.
引用
收藏
页数:30
相关论文
共 62 条
[11]   Effective Lagrangian for strongly coupled domain wall fermions [J].
Berruto, F ;
Brower, RC ;
Svetitsky, B .
PHYSICAL REVIEW D, 2001, 64 (11)
[12]  
BUNDER JE, ARXIV07072932
[13]   The replica limit of unitary matrix integrals [J].
Dalmazi, D ;
Verbaarschot, JJM .
NUCLEAR PHYSICS B, 2001, 592 (03) :419-444
[14]   Microscopic eigenvalue correlations in QCD with imaginary isospin chemical potential [J].
Damgaard, P. H. ;
Heller, U. M. ;
Splittorff, K. ;
Svetitsky, B. ;
Toublan, D. .
PHYSICAL REVIEW D, 2006, 73 (10)
[15]   Universal spectral correlators and massive Dirac operators [J].
Damgaard, PH ;
Nishigaki, SM .
NUCLEAR PHYSICS B, 1998, 518 (1-2) :495-512
[16]   The microscopic spectral density of the QCD Dirac operator [J].
Damgaard, PH ;
Osborn, JC ;
Toublan, D ;
Verbaarschot, JJM .
NUCLEAR PHYSICS B, 1999, 547 (1-2) :305-328
[17]   New method of determining Fπ on the lattice -: art. no. 091501 [J].
Damgaard, PH ;
Heller, UM ;
Splittorff, K ;
Svetitsky, B .
PHYSICAL REVIEW D, 2005, 72 (09)
[18]   Extracting Fπ from small lattices:: Unquenched results [J].
Damgaard, PH ;
Heller, UM ;
Splittorff, K ;
Svetitsky, B ;
Toublan, D .
PHYSICAL REVIEW D, 2006, 73 (07)
[19]  
Damgaard PH, 2001, PHYS REV D, V63, DOI 10.1103/PhysRevD.63.045012
[20]  
DeWitt B, 1984, Supermanifolds, V1st