Pure-quartic solitons and their generalizations-Theory and experiments

被引:61
作者
de Sterke, C. Martijn [1 ,2 ]
Runge, Antoine F. J. [1 ]
Hudson, Darren D. [3 ]
Blanco-Redondo, Andrea [4 ]
机构
[1] Univ Sydney, Sch Phys, Inst Photon & Opt Sci IPOS, Sydney, NSW, Australia
[2] Univ Sydney, Univ Sydney Nano Inst Sydney Nano, Sydney, NSW 2006, Australia
[3] CACI Photon Solut, 15 Vreeland Rd, Florham Pk, NJ 07932 USA
[4] Nokia Bell Labs, 600 Mt Ave, New Providence, NJ 07974 USA
基金
澳大利亚研究理事会;
关键词
SELF-SIMILAR PROPAGATION; INDUCED MODULATIONAL INSTABILITY; ULTRA-FLATTENED DISPERSION; SIDE-BAND GENERATION; OPTICAL SOLITONS; SUPERCONTINUUM GENERATION; 4TH-ORDER DISPERSION; FREQUENCY COMBS; NONLINEAR-WAVES; FIBER-LASER;
D O I
10.1063/5.0059525
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Solitons are wave packets that can propagate without changing shape by balancing nonlinear effects with the effects of dispersion. In photonics, they have underpinned numerous applications, ranging from telecommunications and spectroscopy to ultrashort pulse generation. Although traditionally the dominant dispersion type has been quadratic dispersion, experimental and theoretical research in recent years has shown that high-order, even dispersion enriches the phenomenon and may lead to novel applications. In this Tutorial, which is aimed both at soliton novices and at experienced researchers, we review the exciting developments in this burgeoning area, which includes pure-quartic solitons and their generalizations. We include theory, numerics, and experimental results, covering both fundamental aspects and applications. The theory covers the relevant equations and the intuition to make sense of the results. We discuss experiments in silicon photonic crystal waveguides and in a fiber laser and assess the promises in additional platforms. We hope that this Tutorial will encourage our colleagues to join in the investigation of this exciting and promising field.</p>
引用
收藏
页数:22
相关论文
共 176 条
[51]   SUBPICOSECOND ALL-FIBER ERBIUM LASER [J].
DULING, IN .
ELECTRONICS LETTERS, 1991, 27 (06) :544-545
[52]   Giant dispersive wave generation through soliton collision [J].
Erkintalo, M. ;
Genty, G. ;
Dudley, J. M. .
OPTICS LETTERS, 2010, 35 (05) :658-660
[53]   PASSIVE-MODE LOCKING BY USING NONLINEAR POLARIZATION EVOLUTION IN A POLARIZATION-MAINTAINING ERBIUM-DOPED FIBER [J].
FERMANN, ME ;
ANDREJCO, MJ ;
SILBERBERG, Y ;
STOCK, ML .
OPTICS LETTERS, 1993, 18 (11) :894-896
[54]   Self-similar propagation and amplification of parabolic pulses in optical fibers [J].
Fermann, ME ;
Kruglov, VI ;
Thomsen, BC ;
Dudley, JM ;
Harvey, JD .
PHYSICAL REVIEW LETTERS, 2000, 84 (26) :6010-6013
[55]   Nearly zero ultraflattened dispersion in photonic crystal fibers [J].
Ferrando, A ;
Silvestre, E ;
Miret, JJ ;
Andrés, P .
OPTICS LETTERS, 2000, 25 (11) :790-792
[56]   GENERATION OF OPTICAL HARMONICS [J].
FRANKEN, PA ;
WEINREICH, G ;
PETERS, CW ;
HILL, AE .
PHYSICAL REVIEW LETTERS, 1961, 7 (04) :118-&
[57]  
Grelu P, 2012, NAT PHOTONICS, V6, P84, DOI [10.1038/nphoton.2011.345, 10.1038/NPHOTON.2011.345]
[58]   DISSIPATIVE MODULATION INSTABILITY IN A NONLINEAR DISPERSIVE RING CAVITY [J].
HAELTERMAN, M ;
TRILLO, S ;
WABNITZ, S .
OPTICS COMMUNICATIONS, 1992, 91 (5-6) :401-407
[59]   Peregrine soliton generation and breakup in standard telecommunications fiber [J].
Hammani, Kamal ;
Kibler, Bertrand ;
Finot, Christophe ;
Morin, Philippe ;
Fatome, Julien ;
Dudley, John M. ;
Millot, Guy .
OPTICS LETTERS, 2011, 36 (02) :112-114
[60]   Cavity-enhanced similariton Yb-fiber laser frequency comb:: 3 X 1014 W/Cm2 peak intensity at 136 MHz [J].
Hartl, I. ;
Schibli, T. R. ;
Marcinkevicius, A. ;
Yost, D. C. ;
Hudson, D. D. ;
Fermann, M. E. ;
Ye, Jun .
OPTICS LETTERS, 2007, 32 (19) :2870-2872