Recommendations for Biomarker Identification and Qualification in Clinical Proteomics

被引:258
作者
Mischak, Harald
Allmaier, Guenter
Apweiler, Rolf
Attwood, Teresa
Baumann, Marc
Benigni, Ariela
Bennett, Samuel E.
Bischoff, Rainer
Bongcam-Rudloff, Erik
Capasso, Giovambattista
Coon, Joshua J.
D'Haese, Patrick
Dominiczak, Anna F.
Dakna, Mohammed
Dihazi, Hassan
Ehrich, Jochen H.
Fernandez-Llama, Patricia
Fliser, Danilo
Frokiaer, Jorgen
Garin, Jerome
Girolami, Mark
Hancock, William S.
Haubitz, Marion
Hochstrasser, Denis
Holman, Rury R.
Ioannidis, John P. A.
Jankowski, Joachim
Julian, Bruce A.
Klein, Jon B.
Kolch, Walter
Luider, Theo
Massy, Ziad
Mattes, William B.
Molina, Franck
Monsarrat, Bernard
Novak, Jan
Peter, Karlheinz
Rossing, Peter
Sanchez-Carbayo, Marta
Schanstra, Joost P.
Semmes, O. John
Spasovski, Goce
Theodorescu, Dan
Thongboonkerd, Visith
Vanholder, Raymond
Veenstra, Timothy D.
Weissinger, Eva
Yamamoto, Tadashi
Vlahou, Antonia
机构
关键词
VALIDATION; CANCER; CLASSIFICATION; DISCOVERY; STANDARDS; PATTERNS; DISEASE; URINE; SERUM;
D O I
10.1126/scitranslmed.3001249
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Clinical proteomics has yielded some early positive results-the identification of potential disease biomarkers-indicating the promise for this analytical approach to improve the current state of the art in clinical practice. However, the inability to verify some candidate molecules in subsequent studies has led to skepticism among many clinicians and regulatory bodies, and it has become evident that commonly encountered shortcomings in fundamental aspects of experimental design mainly during biomarker discovery must be addressed in order to provide robust data. In this Perspective, we assert that successful studies generally use suitable statistical approaches for biomarker definition and confirm results in independent test sets; in addition, we describe a brief set of practical and feasible recommendations that we have developed for investigators to properly identify and qualify proteomic biomarkers, which could also be used as reporting requirements. Such recommendations should help put proteomic biomarker discovery on the solid ground needed for turning the old promise into a new reality.
引用
收藏
页数:6
相关论文
共 34 条
[1]   Clinical cancer proteomics: Promises and pitfalls [J].
Alaiya, A ;
Al-Mohanna, M ;
Linder, S .
JOURNAL OF PROTEOME RESEARCH, 2005, 4 (04) :1213-1222
[2]   A prototypical process for creating evidentiary standards for biomarkers and diagnostics [J].
Altar, C. A. ;
Amakye, D. ;
Bounos, D. ;
Bloom, J. ;
Clack, G. ;
Dean, R. ;
Devanarayan, V. ;
Fu, D. ;
Furlong, S. ;
Hinman, L. ;
Girman, C. ;
Lathia, C. ;
Lesko, L. ;
Madani, S. ;
Mayne, J. ;
Meyer, J. ;
Raunig, D. ;
Sager, P. ;
Williams, S. A. ;
Wong, P. ;
Zerba, K. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2008, 83 (02) :368-371
[3]   Towards complete and accurate reporting of studies of diagnostic accuracy: The STARD initiative [J].
Bossuyt, PM ;
Reitsma, JB ;
Bruns, DE ;
Gatsonis, CA ;
Glasziou, PP ;
Irwig, LM ;
Lijmer, JG ;
Moher, D ;
Rennie, D ;
de Vet, HCW .
CLINICAL CHEMISTRY, 2003, 49 (01) :1-6
[4]  
BOUISSOU F, 2006, NAT MED, V12, P398
[5]   Is cross-validation valid for small-sample microarray classification? [J].
Braga-Neto, UM ;
Dougherty, ER .
BIOINFORMATICS, 2004, 20 (03) :374-380
[6]   Minimum information about a microarray experiment (MIAME) - toward standards for microarray data [J].
Brazma, A ;
Hingamp, P ;
Quackenbush, J ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Aach, J ;
Ansorge, W ;
Ball, CA ;
Causton, HC ;
Gaasterland, T ;
Glenisson, P ;
Holstege, FCP ;
Kim, IF ;
Markowitz, V ;
Matese, JC ;
Parkinson, H ;
Robinson, A ;
Sarkans, U ;
Schulze-Kremer, S ;
Stewart, J ;
Taylor, R ;
Vilo, J ;
Vingron, M .
NATURE GENETICS, 2001, 29 (04) :365-371
[7]   Statistical strategies for avoiding false discoveries in metabolomics and related experiments [J].
Broadhurst, David I. ;
Kell, Douglas B. .
METABOLOMICS, 2006, 2 (04) :171-196
[8]   Adjusting for verification bias in diagnostic test evaluation: A Bayesian approach [J].
Buzoianu, Manuela ;
Kadane, Joseph B. .
STATISTICS IN MEDICINE, 2008, 27 (13) :2453-2473
[9]   Urine in Clinical Proteomics [J].
Decramer, Stephane ;
de Peredo, Anne Gonzalez ;
Breuil, Benjamin ;
Mischak, Harald ;
Monsarrat, Bernard ;
Bascands, Jean-Loup ;
Schanstra, Joost P. .
MOLECULAR & CELLULAR PROTEOMICS, 2008, 7 (10) :1850-1862
[10]   Comparison of discrimination methods for the classification of tumors using gene expression data [J].
Dudoit, S ;
Fridlyand, J ;
Speed, TP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) :77-87