Writing Silica Structures in Liquid with Scanning Transmission Electron Microscopy

被引:23
|
作者
de Put, Marcel W. P. van [1 ,2 ]
Carcout, Camille C. M. C. [1 ,2 ]
Bomans, Paul H. H. [1 ,2 ]
Friedrich, Heiner [1 ,2 ]
de Jonge, Niels
Sommerdijk, Nico A. J. M. [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Dept Chem Engn & Chem, Lab Mat & Interface Chem, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Dept Chem Engn & Chem, Soft Matter CryoTEM Res Unit, NL-5600 MB Eindhoven, Netherlands
关键词
liquid cells; STEM; patterning; silica nanoparticles; scanning electron microscopy; atomic force microscopy; NANOCRYSTAL GROWTH; INDUCED DEPOSITION; WATER; BEAM; NANOPARTICLES; ASSEMBLIES; NUCLEATION; RESOLUTION; NITRIDE; CELLS;
D O I
10.1002/smll.201400913
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silica nanoparticles are imaged in solution with scanning transmission electron microscopy (STEM) using a liquid cell with silicon nitride (SiN) membrane windows. The STEM images reveal that silica structures are deposited in well-defined patches on the upper SiN membranes upon electron beam irradiation. The thickness of the deposits is linear with the applied electron dose. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrate that the deposited patches are a result of the merging of the original 20 nm-diameter nanoparticles, and that the related surface roughness depends on the electron dose rate used. Using this approach, sub-micrometer scale structures are written on the SiN in liquid by controlling the electron exposure as function of the lateral position.
引用
收藏
页码:585 / 590
页数:6
相关论文
共 50 条
  • [41] Atmospheric Pressure Scanning Transmission Electron Microscopy
    de Jonge, Niels
    Bigelow, Wilbur C.
    Veith, Gabriel M.
    NANO LETTERS, 2010, 10 (03) : 1028 - 1031
  • [42] Elemental mapping in scanning transmission electron microscopy
    Allen, L. J.
    D'Alfonso, A. J.
    Findlay, S. D.
    LeBeau, J. M.
    Lugg, N. R.
    Stemmer, S.
    ELECTRON MICROSCOPY AND ANALYSIS GROUP CONFERENCE 2009 (EMAG 2009), 2010, 241
  • [43] On the history of scanning electron microscopy, of the electron microprobe, and of early contributions to transmission electron microscopy
    Von Ardenne M.
    Hawkes P.
    Mulvey T.
    Advances in Imaging and Electron Physics, 2021, 220 : 25 - 50
  • [44] Phase-contrast imaging in aberration-corrected scanning transmission electron microscopy
    Krumeich, F.
    Mueller, E.
    Wepf, R. A.
    MICRON, 2013, 49 : 1 - 14
  • [45] Recent advances in the study of colloidal nanocrystals enabled by in situ liquid-phase transmission electron microscopy
    Moreno-Hernandez, Ivan A.
    Crook, Michelle F.
    Jamali, Vida
    Alivisatos, A. Paul
    MRS BULLETIN, 2022, 47 (03) : 305 - 313
  • [46] Visualizing Gold Nanoparticle Uptake in Live Cells with Liquid Scanning Transmission Electron Microscopy
    Peckys, Diana B.
    de Jonge, Niels
    NANO LETTERS, 2011, 11 (04) : 1733 - 1738
  • [47] Quantifying the Nucleation and Growth Kinetics of Electron Beam Nanochemistry with Liquid Cell Scanning Transmission Electron Microscopy
    Wang, Mei
    Park, Chiwoo
    Woehl, Taylor J.
    CHEMISTRY OF MATERIALS, 2018, 30 (21) : 7727 - 7736
  • [48] Exploring Biomineralization Processes Using In Situ Liquid Transmission Electron Microscopy: A Review
    DiCecco, Liza-Anastasia
    Tang, Tengteng
    Sone, Eli D.
    Grandfield, Kathryn
    SMALL, 2025, 21 (02)
  • [49] Liquid-Phase Transmission Electron Microscopy for Studying Colloidal Inorganic Nanoparticles
    Kim, Byung Hyo
    Yang, Jiwoong
    Lee, Donghoon
    Choi, Back Kyu
    Hyeon, Taeghwan
    Park, Jungwon
    ADVANCED MATERIALS, 2018, 30 (04)
  • [50] Scanning electron microscopy of impurity structures in snow
    Rosenthal, Walter
    Saleta, Jose
    Dozier, Jeff
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2007, 47 (1-2) : 80 - 89